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A genome-wide expression analysis was undertaken to identify novel genes specifically activated from early stages of gameto
n Plasmodium falciparum. A comparative analysis was conducted on sexually induced cultures of reference parasite clone 3D7 and
ocyteless derivative clone F12. Competitive hybridisations on long-oligomer microarrays representing 4488P. falciparumgenes identifie

remarkably small number of transcripts differentially produced in the two clones. Upregulation of the mRNAs for the early ga
arkers Pfs16 and Pfg27 was however readily detected in 3D7, and such genes were used as reference transcripts in a com

ourse analysis of 3D7 and F12 parasites between 30 and 40 h post-invasion in cultures induced to enter gametocytogenesis. One
eventeen genes had expression profiles which correlated to those ofpfs16andpfg27, and Northern blot analysis and published proteo
ata identified those whose expression was gametocyte-specific. Immunofluorescence analysis with antibodies against two o
roducts identified two novel parasite membrane associated, sexual stage-specific proteins. One was produced from stage I gam

he second showed peak production in stage II gametocytes. The two proteins were named Pfpeg-3 and Pfpeg-4, forP. falciparum proteins of
arly gametocytes.
2005 Elsevier B.V. All rights reserved.
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. Introduction

The spread of malaria in human populations is caused
y the alternate life cycle of its aetiological agent, the pro-

ozoan parasites of the genusPlasmodium, between human
osts andAnophelesmosquitoes. The global efficiency of this
rocess is well summarised by the figures of 300–500 mil-

ion clinical cases of malaria and 1.1–2.7 million deaths per
ear, largely caused byPlasmodium falciparumin African
hildren[1]. Parasite gametocytes play a central role in this
rocess as they ensure transmission ofPlasmodiumfrom an

∗ Corresponding author. Tel.: +39 0649902868; fax: +39 0649902226.
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infected individual to the insect. Gametocytes are forme
the human host, where some blood stage parasites ce
multiply asexually and enter the pathway of sexual diffe
tiation. Gametocytogenesis inP. falciparumlasts about 1
days, and it is traditionally divided into five morphologi
stages of maturation[2].

Onset and early events ofP. falciparumsexual differen
tiation are still poorly understood events in the parasite
cycle, and are the objects of the present study. Avai
experimental evidence indicate that during parasite m
plication in the bloodstream some asexual schizonts co
their progeny to develop as gametocytes upon reinvasio[3].
Such sexually committed merozoites invade new red b
cells, and in the first 30–40 h post-invasion distinct molec
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changes occur in the parasite, which together identify a
gametocyte of stage I. While no obvious morphological
difference in light or electron microscopy distinguishes this
cell from a small asexual trophozoyte[4] the early sexual cell
actively produces two specific proteins: Pfg27, an abundant
dimeric cytosolic phosphoprotein essential for gametocyte
formation [5] and Pfs16, a membrane protein localised
in the gametocyte parasitophorous vacuole[6,7]. These
events are preliminary to the appearance of a network of
subpellicular microtubules and the morphological changes
leading to the crescent-shaped stage II gametocyte detectable
since 48 h p.i.[4]. Besides these events, early sexual stages
are otherwise poorly characterised biochemically and
physiologically.

Transcriptome analysis, to date carried out on various
developmental stages ofP. falciparum with different
microarray platforms[8–11], has been conducted also on
gametocytes, resulting in at least a 10-fold increase in the
number of identified genes expressed in sexual stages[8,11].
These analyses however invariably recurred to Percoll puri-
fied gametocytes, mainly at stages III and IV of maturation,
and they were never conducted on the young sexual stages.
The present work aimed instead to analyse genome-wide the
transcriptional changes associated to induction and formation
of early gametocytes inP. falciparum. To this aim we utilised
the reference parasite clone 3D7[12], and microarrays con-
t the
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2. Materials and methods

2.1. Parasite lines and cultivation

P. falciparumclones 3D7A[12] and F12[18] were grown
in 0+ red blood cells in RPMI 1640 plus hypoxanthine
50�g/ml, supplemented with 10% heat-inactivated 0+

human naturally-clotted serum, at 37◦C, in a 2% O2
and 5% CO2 atmosphere. For parasite synchronisation,
cultures at 8–10% parasitaemia at 10% haematocrit were
centrifuged at 3000 rpm for 10 min through a 60% Percoll
cushion and slow sedimenting schizonts used to reinvade
fresh red blood cells. Morphological analysis of Giemsa
stained slides indicated that resulting cultures typically
contained >95% ring stages within 90 min of incubation.
Cultivation and Percoll gradient purification of stage III–IV
gametocytes is described in[20]. Method used to measure
gametocyte conversion rates was described in[3]. In brief
it consisted in staining parasites 40 h post-invasion with
antibodies specific for Msp1 and Pfg27 and measuring
numbers of specifically stained asexual schizonts and young
gametocytes.

2.2. Microarray fabrication and hybridisation

Array fabrication and slide hybridisation were performed
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aining 7462 long oligonucleotides specific for 4488 of
409 ORFs annotated by theP. falciparumgenome sequen

ng consortium[10]. This approach had to face two techn
ifficulties. Unlike described developmental studies
rotozoa or fungi[13–16], induction ofP. falciparumsexua
ifferentiation in vitro is poorly controlled, and it routine
chieves gametocyte conversion rates of 10–20% of the
ite culture. In addition sexually committed schizonts ca
e physically purified, and enrichment of stage I gametoc
equires exposure to drug treatment that we preferred to
n our experimental design. For these reasons our ex

ents, in which gametocytogenesis was induced by gro
arasite cultures to high density[17,3], recurred to a contro
arasite clone unable to produce gametocytes as a sou
ackground asexual mRNA. Gametocyteless clone F12
ere was obtained from 3D7 after long term asexual p
gation, and it is unable to produce either morphologic
ecognisable gametocytes or the early sexual stages ex
ng the Pfg27 marker[18]. Gene expression was recen
ompared between asexual forms of the two clones on a
ection of 153 parasite genes involved in signalling, cell c
nd transcription. Only eight genes showed minor di
nces in transcript levels between the two clones, confir
n one hand the isogenic background of these parasite

ailing on the other hand to suggest the nature of the m
lar defect of the gametocyteless mutant[19]. The first step
f the present investigation was thus to preliminary exp

ranscriptome differences between 3D7 and F12 in par
ultures grown at high density, a condition inducing se
ifferentiation.
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s described in[10]. In brief, the DNA microarray containe
462 70-mer oligonucleotides representing 4488 of the
RFs annotated by the malaria genome sequencing co

ium, and slides were printed in the laboratory of Dr. De
UCSF, USA). Information on array design is availa
t MIAME express (http://www.ebi.ac.uk/MIAMEexpres
ith accession code A-MEXP-130. For RNA preparatio
arasitised red blood cells were harvested in prewa

ncomplete medium, lysed in 0.05% saponin solution
xPBS, pelleted, and flash frozen in liquid nitrogen (total t
5 min). Frozen pellets were extracted according to[21], and
0–15�g of total RNA and oligo-dT18 primers were used
roduce aminoallyl-dUTP (Sigma)-labelled cDNA for che

cal coupling to monofunctional Cy3 and Cy5 (Amersh
harmacia Biotech). Purified cyanine-labelled cDNAs w
ybridised on microarray chips in 20 microliters of 3xS
.5% SDS, 1�g/�l of polyA DNA (Pharmacia Biotech) a
escribed in[22] in custom made hybridisation chamb

ncubated for 16–24 h at 68◦C. After washing, fluoresce
icroarray images were acquired with a GenePix 4000B
nalysed by GenePix Pro 3.01 (Axon Instruments, U
ity, California, USA). Microarray spots were inspected
ize and shape, and passed quality control if their m
ixel intensity was greater than the local background

wo standard deviations for both channels. Array data
edian-scaled normalised and only quality-filtered featu
ith values present in more than 80% of experiments w
ubjected to the cluster analysis using the Acuity 3.1
are (Axon Instruments, Union City, California, USA).
further measure of data set quality, correlation coeffic
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were calculated for hybridisation values of multiple oligonu-
cleotides for the same genes. Average of correlation coeffi-
cients was 0.83 (S.D. = 0.24).

2.3. Protein expression and purification

Production of a recombinant fragment of Pfpeg-3
(PFL0795c). Primers n.1 and n.2 inTable I (supplemen-
tary data)were used to PCR amplify 378 bp (126 aminoacids)
of the pfpeg-3 coding region which was digested with
BamHI–NotI, and inserted in frame at the C-terminal portion
of the glutathione S-transferase protein encoded in vector
pGEX-1 (Amersham Pharmacia Biotech). Recombinant
fusion protein, produced inE. coliBL21 strain, was attached
to a Glutathione-Sepharose column and digested with
PreScissionTM Protease (Amersham Pharmacia Biotech) in
order to cut the Pfpeg-3-specific portion of the fusion protein
and release the Pfpeg-3 recombinant polypeptide of approxi-
mately 16 kDa from the column. Production of a GST fusion
protein with a recombinant portion of Pfpeg-4 (PF100164).
Primers n.3 and n.4 inTable I (supplementary data)were
used to PCR amplify 237 bp (79 aminoacids) of thepfpeg-4
coding region which was digested withEcoRI–NotI, and
inserted as described above in vector pGEX-1 (Amer-
sham Pharmacia Biotech). Recombinant fusion protein
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2.5. Probes and northern analysis

Polymerase chain reaction amplification (PCR). PCR
amplification reactions were obtained with AmpliTaq Gold
polymerase (Perkin-Elmer) in 50�l reactions with 2 mM Mg,
0.2 mM dNTP and 20 pmol of each primer after target DNA
denaturation at 94◦C for 2 min, followed by 30 cycles of
94◦C for 30 s, 55◦C for 1 min, 68◦C for 2 min, and a final
elongation at 68◦C for 7 min.Table I (supplementary data)
contains the list of primers used to amplify various frag-
ments used as probes for Northern blot analysis. Total RNA
extracted as described above or with the RNeasy kit (QIA-
GEN) was separated through 1% agarose and formaldehyde
gel and blotted by standard methods onto Extra-C nitrocellu-
lose (Amersham).32P-labelled DNA probes were hybridised
overnight in 0.5 M phosphate buffer 7% SDS at 58◦C and
washed in 1xSSC 0.1% SDS at the same temperature before
autoradiography. Sizes of PCR fragments obtained from
genomic DNA for the various genes were consistent with
the sizes expected from the genome sequence information,
and they were as follows: PF140108 669 bp; PF100164
313 bp; PFL0795c 660 bp; PF110040 (pfsep11.1) 278 bp;
PF110477 462 bp; PF130161 795 bp; PFI0915w 290 bp,
PFB0685c 616 bp.
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1 mg/ml), Triton (1%) and Sarkosyl (1.5%) prior
onication.

.4. Antibodies and immunofluorescence analysis

Rat immunisation. Purified 16 kDa Pfpeg-3 fragment, t
ST-Pfpeg-4 described above, and GST alone were us

mmunise male Sprague–Dowley rats. Each animal rec
ubcutaneous injection of 200�g of polypeptide in complet
reund adjuvant, after which a second injection of pep
ith incomplete Freund adjuvant and two intramusc

njections of the peptide alone followed at 2-week interv
lood was eventually collected by cardiac puncture from
nesthetised animal, and serum was obtained after cl

or 3 h at 37◦C.
Parasites for immunofluorescence analysis were fixe

icroscope slides either in acetone or in 4% paraform
eyde (30 min at room temperature) followed by 10

ncubation in 0.1% Triton X100. Antibodies were then in
ated at the indicated dilutions with 1% BSA 0.1% Tw
0, washed in 1xPBS, and incubated with 1:200 dilu
f rhodamine- or fluorescein-conjugated affinity puri
nti-rat IgG antibodies (Cappell) and 0.1�g/ml DAPI.
fter final washes slides were examined with Leitz DM
uorescent microscope equipped with filters BP 340–
DAPI), BP 470–490 (fluorescein), and BP 515–560 (
amine), and images merged with Photoshop 5.0 soft
Adobe).
. Results

.1. Pairwise comparison of 3D7 and F12
ranscriptomes.

Three parallel pairs of cultures (biological replicates) w
btained for 3D7 and F12, and grown to high parasitae
D7 cultures contained asexual parasites and variable

ions of young (mainly stage I) gametocytes, with con
ion rates ranging between 10 and 20%. Parallel cultur
lone F12 failed instead to produce Pfg27-positive yo
exual stages, and parasites exhibited only asexual mo
gy. RNA samples from each pair of cultures were use
icroarray competitive hybridisation experiments in o

o explore transcriptional differences between the par
lones, and to identify genes specifically expressed in
D7 parasite subpopulation entering sexual differentia
DNAs from one replicate (R1) were used in a dye s
xperiment, while in the other replicates (R2, R3) 3D7 cD
amples were labelled with Cy5 and F12 samples with
t least two microarray hybridisations per replicate w
roduced and analysed as described in the experim
rocedures (average correlation coefficient for the tech
eplicates = 0.71± 0.08), and expression ratios were obtai
or 832 genes in replicate R1, 2365 in R2 and 2885 in R

Established an arbitrary threshold of two-fold differe
n transcript abundance, a total of 78 genes were up
ated in 3D7 in all experiments, of which however only ei
esulted reproducibly upregulated in at least two out of t
eplicates(Table II, supplementary data). Despite such hig
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biological variation between replicates, the genes encoding
the early gametocyte markers Pfg27 (PF130011) and Pfs16
(PFD0310w) were readily detected as upregulated, and were
present amongst the eight genes. The remaining six coded for
two heat shock proteins (PFI0875, PF080054), three non-
annotated hypothetical proteins (PF100164, PF140744,
PF130338), and one member of the PfSep protein family
[23] (PF110040). The entire data set was also inspected
for expression levels of genes encoding known sexual stage-
specific proteins which appear at later stages of gametocyte
maturation, such as Pfs45/48 and Pfs230, produced since
stage II gametocytes[24], Pftubulin-�II and Pfg377, since
stage III[25,26], Pfs230II, specific for stage V male gameto-
cytes[27], and Pfs25, appearing in gametes[28]. This anal-
ysis showed that none of these mRNAs was upregulated in
3D7 parasites(Table III, supplementary information), which
confirmed morphological observations that sexual differenti-
ation was still at an early phase in the 3D7 cultures analysed
and, importantly, that mRNAs from mature gametocytes were
not significantly contributing to the RNA pool obtained from
3D7 parasites.

In summary these experiments indicated that 3D7 and
F12 parasites have remarkably similar transcriptomes in the
gametocyte inducing conditions used here, and that 3D7 does
not produce a large set of reproducibly upregulated genes
compared to F12. On the other hand this analysis readily
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I gametocytes were present, and stage II gametocytes from
the previous cycle were also detectable (data not shown).

cDNAs from all time points were Cy5-labelled and
hybridised against aliquots of a reference cDNA pool
obtained mixing the above points, yielding a total of
13 microarray hybridisations. Data of these microarray
experiments were submitted to MIAMEexpress database
(http://www.ebi.ac.uk/MIAMEexpress/). Log2 transformed
expression ratios were calculated for 2217 array elements,
representative of 1810 predicted genes, and expression pro-
files of these genes across the three time courses were
obtained. A hierarchical clustering algorithm, based on an
uncentered Pearson correlation matrix, was used to organise
correlated expression profiles in a tree structure[31], and the
minimal correlation node which contained expression pro-
files from the array elements specific forpfg27andpfs16
was thus identified (Fig. 1D, asterisk). In this node 143 array
elements were present, representative of 119 genes whose
expression profiles showed an average correlation of 0.91
(Table IV, supplementary data). In culture 3D7-1 relative
abundances of these mRNA were initially low but showed
a marked increase around 40 h p.i. (Fig. 2A, time points a
to d in 3D7-1). In culture F12-1 levels of these transcripts
remained constantly low at all time points (Fig. 2A, e to h in
F12-1). Finally, in gametocyte enriched culture 3D7-2 levels
of these mRNAs were comparatively higher over the back-
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etected mRNA specific upregulation of both the early ga
ocyte markerspfs16andpfg27 in the fraction of parasite
ntering sexual differentiation, probably given the abund
f these transcripts in young gametocytes[29,30]. This resul

hus validated the use ofpfg27andpfs16transcripts as rel
ble references in microarray analysis of early sexual st
ut suggested to recurr to a more sensitive experim
esign to detect gene expression specific for early s
evelopment.

.2. Comparative time course analysis of high
arasitaemia cultures of 3D7 and F12

A time course experiment was thus designed to ana
arasite cultures developing in the first 30–40 h after
lood cell invasion, a moment in which differentiat
f asexual schizonts and of stage I gametocytes oc
hree parallel time courses were analysed. Percoll pu
chizonts of 3D7 and F12 were used to start two synchro
ultures, which were sampled from 30 to 40 h p.i. (cultu
D7-1 and F12-1 inFig. 1A and B). As however such high
ynchronous cultures routinely show lower gameto
onversion rates compared to asynchronous para
conversion rate for the above 3D7-1 culture was 4%
econd 3D7 culture with higher gametocyte production
ncluded in the experiment. Culture 3D7-2 was starte
escribed above, but parasites underwent two subse
sexual cycles, and RNA samples were obtained bet
pproximately 30–40 h after the second erythrocyte inva
Fig. 1, panel C). At these time points higher numbers of s
t

round reference, and tended to increase with time (Fig. 2A, i
o m in 3D7-2). Representative hybridisation signals for s
f the 143 array elements are shown inFig. 2B.

The same data set was analysed with the indepe
pproach of non-hierarchicalk-medians clustering[32],
pplying the same criterium of finding the minimum corre

ion set including all array elements forpfs16andpfg27. Gap
tatistics analysis[33] estimated an optimal cluster numb
f 14, and indicated that one of them containedpfg27and
fs16with additional 149 array elements, representing
enes. 94 of these were clustered together also in the
ierarchical approach(Table IV, supplementary data), which

ndicated a robust correlation between expression profile
ost of the genes identified in this analysis.
In conclusion the comparative time course analysis

ented here detected a group of parasite transcripts sp
ally upregulated between 30 and 40 h after merozoite
ion only in 3D7 parasites and not in F12 gametocyte
arasites. The fact that their expression profiles clustered

hose of genespfg27andpfs16, and that they were upreg
ated in a culture enriched for young gametocytes sugg
hat their expression was associated to early sexual diff
iation.

.3. Analysis of the gene cluster upregulated in 3D7
arasites

Besidespfg27 and pfs16, only 32% of the 117 gene
dentified above were functionally annotated accordin
ene Ontology classification, as reported in the Plasm
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Fig. 1. Comparative time course experiment. (A–C) Description of cultures 3D7-1, F12-1 and 3D7-2 from synchronisation to times points of RNA sampling
(indicated by letters under thex-axis). Parasitaemias of cultures 3D7-1, F12-1 and 3D7-2 were 7.5, 13, and 11%, respectively. Symbols for parasite stages are
red squares: morphologically recognisable stage II gametocytes; blue circles: schizonts; green triangles: ring forms. (D) Tree diagram showing result of cluster
analysis on 2217 expression profiles from the 13 time points, indicated above the diagram. The tree node highlighted in red and marked by an asterisk contains
the expression profiles of the long-oligomers specific forpfg27andpfs16plus 141 additional array elements.

database (release 4.3, November 2004), or in the KEGG
Genes Database (release 32.0+/12-03, December 2004),
while the vast majority were putative hypothetical pro-
teins lacking homologous counterparts in protein sequence
databases(Table IV, supplementary data). No distinct func-
tional class of genes was overrepresented amongst the anno-
tated sequences to suggest that a specific cellular or metabolic
process was upregulated in 3D7 or defective in F12 in the time
course analysed. The presence in this cluster of individual
annotated genes however suggested possible involvement in

early sexual differentiation of specific molecular processes.
Presence of a putative diacylglycerol kinase (PFI1485c)
and a putative cAMP-specific 3′5′-cyclic phosphodiesterase
(MAL13P1.119) was for instance noticeable as the former
class of molecules is implicated in differentiation processes
[34], while the cyclic AMP-dependent pathway was specif-
ically proposed to be involved inPlasmodiumsexual dif-
ferentiation [35]. Presence of three putative transcription
factors (PF110477, MAL7P1.86 and PFB0290c) was also
noticeable because, despite their annotation as general tran-
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Fig. 2. Expression profiles and representative microarray hybridisation sig-
nals of genes clustered withpfg27andpfs16. (A) Box plot of the average
expression profiles for the 143 array elements clustered withpfg27andpfs16
in the time course experiment ofFig. 1. The y-axis reports the log2 val-
ues of the Cy5/Cy3 ratios. (B) Hybridisation signals for nine representative
oligonucleotide spots from the above cluster, aligned under the correspond-
ing time points. Spots were randomly located within the microarray chip.
Identity of the array elements and corresponding genes are 1: M327751
(PF130011); 2: D4917646 (PFD0310w); 3: N15033 (PF140108); 4:
F289641 (PF130161); 5: Ks662 (PF110477); 6: Ks7515 (PF110040);
7: J4253 (PF100164); 8: F367215 (MAL7P1.86); 9: L2280 (PFL0795c).

scription factors, their presence in the cluster might suggest
that these molecules play instead specific, possibly regula-
tive, roles in governing gene expression in sexual differ-
entiation. Genes were also noticed whose presence could
be related to the major cellular transformation observed in
early gametocytes[4], such as proteins catalysing phosphorus
metabolism (five kinases, two transferases and three phos-
phatases), two myosins, one myosin interacting protein and
one actin-binding protein. This group of gene products might
suggest a role for signalling and post-translational modifica-
tions in the major cytoskeletal rearrangements accompanying
transition from stage I to stage II gametocytes. Finally, pres-
ence of three of the seven members of theP. falciparum
sepgene family, encoding conserved proteins transported to
the erythrocyte cytoplasm both in the rodent and the human
parasites[23] might suggest involvement of protein traffick-
ing in such rearrangements. Other annotated genes, however
encoded molecules, which do not play obvious roles in sex-

ual differentiation, such as three merozoite surface proteins
and one erythrocyte and one retyculocyte binding antigens.
Although it might be tempting to speculate that presence of
the latter is related to the observed increased efficiency of
gametocyte production in young red blood cells[36], differ-
ential expression of such transcripts are more likely due to
parasite clone-specific gene expression or uncontrolled envi-
ronmental differences between the asexual parasites in the
3D7 and F12 cultures.

Although some functional clues could be derived from the
annotation of the genes identified in the above experiment,
this analysis indicated that deeper insights into physiology
and specific molecular mechanisms governing parasite early
sexual differentiation will require functional characterisation
of the hypothetical, non-annotated gene products identified
here.

3.4. Characterisation of novel gene products specifically
upregulated at the onset of gametocytogenesis

Since the main objective of this study was to identify novel
sexual-stage specific genes whose expression started in early
gametocytes, an assumption was made that such genes were
likely to express their sexual stage-specific products also at
later stages of gametocyte maturation.P. falciparumstage-
specific proteome data (available for 80 out of 119 genes)
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ey on eight of such genes was then conducted to an
heir stage-specific pattern of mRNA production in ase
arasites of 3D7, and in stage III–IV gametocytes, equ

ent to those used for the above proteomic analysis. Nor
lot results showed that six out of eight genes (PFL07
F100164; PF130161; PFI0915w; PF140108, PFB0685c
ere transcribed specifically or predominantly in sex
tages, while two (PF110040; PF110477) produced mRN
lso in asexual parasites, indicating that stage-specific
xpression of this group of genes was in most cases cont
t the level of mRNA abundance (Fig. 3). Observation tha
enes first identified for their coexpression withpfg27and
fs16, were specifically transcribed and translated in ma

ng gametocytes, strongly suggested that their expre
tarted since the early phase of gametocytogenesis.

This hypothesis was tested for two of them, PFL0795c
F100164, by using antibodies raised against the respe

ecombinant proteins on asexual parasites and gametoc
ifferent stages of maturation. The above genes were se
lso because both putative gene products contained a
equence, and one of them – PF100164 – a transmembra
egion, suggesting that they coded for novel secr
r membrane associated proteins specific of the
ametocytes.

Immunofluorescence analysis indicated that the
erum specific for PFL0795c reacted only with gametoc
nd not with asexual blood forms (Fig. 4, panels 1a and c

mportantly, anti-PFL0795c antibodies specifically rea
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Fig. 3. mRNA production in 3D7 asexual parasites and mid-stage game-
tocytes for eight genes from thepfs16/pfg27 cluster, which showed
gametocyte-specific product in proteomic analysis. Panels show ethidium
bromide stained agarose gels with identical samples of total RNA from
3D7 asynchronous asexual parasites (lanes A), and from Percoll-purified
stage III–IV gametocytes (lanes G), and autoradiographies of the respective
nitrocellulose filters hybridised with PCR fragments specific for the genes
indicated under each panel. RNA molecular marker is the 0.1–1 kb Perfect
RNATM Markers (Novagen).

with the small, round shaped stage I gametocytes, whose
identification was confirmed with anti-Pfg27 antibodies in
double immunofluorescence experiments (Fig. 4, panels1a,
b and c). Fluorescent reaction on the more mature stage III
and IV gametocytes indicated that the PFL0795c gene prod-
uct persisted throughout gametocyte maturation. The pattern
of fluorescence on the sexual cells indicated that the pro-
tein was associated to membranous structures surrounding
the parasite, possibly representing the gametocyte surface or
the parasitophorous vacuole membranes (Fig. 4, panels 2, 3
and 4). This analysis in summary showed that the PFL0795c
gene product is sexual-stage specific, starts to be produced in
stage I gametocytes, and it is present throughout gametocyte
maturation.

Immunofluorescence analysis with antibodies specific for
the PF100164 gene product showed that also this protein
was produced only in gametocytes and not in asexual stages
(Fig. 4, panel 5a, b and c). Unlike the above case, stage I game-

tocytes were almost negative to the anti-PF100164 specific
serum. The brightest fluorescence was instead specifically
observed on stage II gametocytes (Fig. 4, panels 6a and b), and
it was comparatively weaker on more mature sexual stages
(Fig. 4, panel 5a, b and c). Staining of the anti-PF100164
serum exhibited a distinctive granular pattern on and around
the gametocytes, indicating that the protein is compartimen-
talised in distinct subcellular structures of the gametocytes.
This analysis showed that the PF100164 gene product is a
novel sexual-stage specific protein, exhibits a peak of produc-
tion in stage II gametocytes, and it is localised in subcellular
structures precedently undescribed in this stage of gameto-
cyte formation. Based on the above results we propose here
to name the genes PFL0795c and PF100164 and their prod-
ucts asP. falciparumprotein of early gametocytes,Pfpeg-3
andPfpeg-4, respectively, to indicate that they represent the
third and fourth protein, beyond Pfs16 and Pfg27, described
to be produced from early gametocytogenesis.

4. Discussion

The work presented here applied for the first time a
genome-wide approach to specifically identifyP. falciparum
transcripts upregulated at the onset of gametocytogenesis,
and resulted in the discovery of two novel gametocyte-
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Fig. 4. Imunofluorescence analysis on 3D7 parasites with antibodies specific for PFL0795c and PF100164 recombinant proteins. Panels 1a to c show the
same field of an acetone-fixed parasite smear reacted with: (1a) rat polyclonal antibodies against PFL0795c (green fluorescence), (1b) rabbit polyclonal anti-
serum against Pfg27 (red fluorescence) and (3) DAPI nuclear staining. In these panels, a and b mark a young and an old stage I gametocyte, respectively,
c a stage II gametocyte, and d indicates a schizont stained only by DAPI. Panels 2–4 show paraformaldehyde-fixed stage III gametocytes reacted with the
anti-PFL0795c serum. Panels 5a to c shows the same field of an acetone-fixed parasite smear reacted with: (5a) rat polyclonal antibodies against PF100164 (red
fluorescence), (5b) rabbit polyclonal antibodies against Pfg27 (green fluorescence) and (5c) DAPI. Anti-PF100164 serum specifically reacts on sexual stages
and not with the multinucleated schizonts detectable only by DAPI in panel 5c. Panel (6a): stage I and II gametocyte reacted with anti-PF100164 serum. Stage
II gametocyte shows the granular pattern of PF100164-specific fluorescence. Both gametocytes are detected by anti-Pfg27 antibodies in panel 6b. All bars
are 4�M.
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predominantly to post-transcriptional control of gene expres-
sion. In an alternative interpretation, however, this could
propose that F12 parasites might not be totally defective in
sexual differentiation, but could be affected at a very early
developmental step, resulting in limited transcriptome differ-
ences with the parental clone. No molecular marker for such
an early event in gametocytogenesis is however available to
distinguish between the two hypotheses.

The reproducible detection of bothpfg27 and pfs16
mRNAs between the genes upregulated in 3D7 indicate
that these rank amongst, or possibly are, the most abundant
gametocyte-specific genes activated in stage I gametocytes.
The described repertoire of specific genes specifically acti-
vated since such an early stage of differentiation is otherwise
very limited, and it includes, to our knowledge, only the
genes for RNA binding proteins Pfpuf1 and Pfpuf2[42]. In
our microarray experiments signals from such genes were
too close to background levels to be detected as upregulated,
probably because young gametocytes were invariably only a
fraction of the 3D7 cultures in our experiments, and only most
abundant transcripts from this subpopulation were likely to be
detected. IndeedpfpufmRNAs, readily detectable by North-
ern blots in mid and late gametocytes, were comparatively
less abundant in stage I and II gametocytes[42].

The novel gametocyte-specific genes described here –
pfpeg-3andpfpeg-4– expand the number of developmental
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