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A pan-viral DNA microarray, the Virochip (University of California, San Francisco), was used to detect human

parainfluenzavirus 4 (HPIV-4) infection in an immunocompetent adult presenting with a life-threatening acute

respiratory illness. The virus was identified in an endotracheal aspirate specimen, and the microarray results

were confirmed by specific polymerase chain reaction and serological analysis for HPIV-4. Conventional clinical

laboratory testing using an extensive panel of microbiological tests failed to yield a diagnosis. This case suggests

that the potential severity of disease caused by HPIV-4 in adults may be greater than previously appreciated

and illustrates the clinical utility of a microarray for broad-based viral pathogen screening.

Hospitalized patients who are admitted with unex-

plained critical respiratory illness have a high mortality

rate, often 130% [1]. In the Unexplained Deaths and

Critical Illnesses Project study from 1995–1998, a pu-

tative infectious agent was identified only 39% of the

time, despite extensive laboratory testing [1]. Thus,

there is a need for new approaches to the identification

of pathogens in this setting. Here, we describe a case

of human parainfluenzavirus type 4 (HPIV-4) infection

in an immunocompetent adult who presented with rap-

idly progressive respiratory failure. Extensive conven-

tional microbiological testing for infectious agents was

unrevealing. The causative pathogen was finally iden-

tified in a sample of endotracheal aspirate using the
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Virochip (University of California, San Francisco), a

pan-viral DNA microarray that is designed to detect

both known and novel viruses on the basis of sequence

homology [2, 3]. To our knowledge, this is the first

report of respiratory failure from HPIV-4 in a healthy,

immunocompetent adult.

CASE REPORT

A previously healthy 28-year-old woman presented to

Stanford University Medical Center (Palo Alto, CA) in

December 2005 with a 10-day history of fever, pro-

ductive cough with hemoptysis, night sweats, and my-

algia. Three days prior to admission, she was treated

as an outpatient with oral azithromycin for presumptive

community-acquired pneumonia, but her symptoms

worsened despite treatment. The patient lived in Nor-

way prior to moving to California in October 2005. She

was a laboratory researcher but denied occupational

exposure to infectious agents. She had 2 pet cats and

was a cigarette smoker. A coworker had also recently

been ill with a respiratory tract infection.

At admission, the patient had a temperature of 39�C

and a resting oxygen saturation of 96% that decreased
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Figure 1. Imaging and lung pathology from the patient. A chest radiograph (A) obtained at admission revealed bilateral reticulonodular infiltrates
with associated lower lobe consolidations, whereas a CT scan (representative slice; B) showed bilateral centrilobular nodules with a tree-in-bud
appearance suggestive of bronchiolitis. After intubation, a chest radiograph was performed on the patient on hospital day 4 that revealed persistent
bilateral infiltrates (C). On day 7 after hospital admission, findings from lung biopsy analysis revealed an organizing bronchiolitis but no direct histological
evidence of virus infection (hematoxylin and eosin stain, low magnification; D).

to 80% with any movement. Her leukocyte count was 21,000

cells/mm3, with 87% neutrophils. A chest radiograph revealed

bilateral reticulonodular infiltrates (figure 1A), and a CT an-

giogram revealed diffuse bronchiolitis (figure 1B). The patient

was treated with ceftriaxone and doxycycline and was placed

in respiratory droplet isolation. The results of initial laboratory

tests, including blood and sputum cultures, rheumatoid factor,

and antinuclear antibody, were negative.

On day 3 after hospital admission, the patient underwent

bronchoscopy, which revealed mild edema and hyperemic

bronchioles. The results of an immunofluorescence test for

Pneumocystis jiroveci were negative, as were bacterial, fungal,

and acid-fast bacilli cultures of bronchoalveolar lavage fluid

samples. A shell vial assay for cytomegalovirus and cytomeg-

alovirus PCR of bronchoalveolar lavage fluid specimens also

yielded negative results. Direct fluorescent antibody testing of

bronchoalveolar lavage fluid using the D3TM-DFA Respiratory

Virus Screening and ID Kit (Diagnostic Hybrids) failed to detect

respiratory syncytial virus, adenovirus, influenzavirus A and B,

and parainfluenzavirus types 1, 2, and 3. Likewise, viral bron-

choalveolar lavage fluid culture using 2 rhesus monkey kidney

cell lines, 2 human fibroblast cell lines, and a continuous A549

human alveolar epithelial cell line failed to demonstrate cyto-

pathic effect or hemadsorption, despite incubation for 21 days.

After bronchoscopy, the patient became dependent on me-

chanical ventilation and pressors, and serial chest radiographs

revealed persistent bilateral infiltrates (figure 1C). Antimicrobial

therapy was changed to moxifloxacin and oseltamivir, and high-

dose methylprednisolone therapy was initiated. Results of viral

direct fluorescent antibody testing for the 7 respiratory viruses

and 14-day viral cultures performed on endotracheal aspirate

specimens obtained on days 3 and 4 after hospital admission

were negative. Nose swab viral cultures performed on day 5

were also negative.

On day 7 after hospital admission, given her critically ill

condition and persistent unexplained respiratory failure, the

patient underwent a diagnostic open-lung biopsy. Histopath-

ologic analysis revealed an organizing bronchiolitis without

granulomas, multinucleated giant cells, or viral nuclear inclu-

sions (figure 1D). The pathology was primarily bronchiolocen-
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tric, with the lumens of the bronchioles filled with granulation

tissue plugs and eosinophils. These features were not typical

for vasculitis, cryptogenic organizing pneumonia, or acute

bronchopneumonia.

The patient improved clinically with continued supportive

care, and by day 15 after hospital admission, she was weaned

off of mechanical ventilation. She was discharged on day 26

after hospital admission. Additional laboratory studies per-

formed during the course of the patient’s hospitalization failed

to identify the etiology of her illness. These studies included

PCR of brochoalveolar lavage fluid specimens for the severe

acute respiratory syndrome (SARS) coronavirus and for me-

tapneumovirus, as well as PCR and direct fluorescent antibody

testing of a nasopharyngeal specimen for Bordetella pertussis.

A urine test for Legionella antigen and a serum test for cryp-

tococcal antigen both yielded negative results. Results of se-

rological analyses for HIV infection, histoplasmosis, blasto-

mycosis, tularemia, sporotrichosis, Q fever, leptospirosis, and

Sin Nombre hantavirus infection were negative. Serum samples

were tested twice during the patient’s hospitalization for coc-

cidioidomycosis, Mycoplasma and Chlamydia antibodies, and

the results were also negative.

Ultimately, diagnosis was made by examination of an en-

dotracheal aspirate from hospital day 4 using the Virochip assay.

The findings on microarray indicated the presence of HPIV-4,

which was confirmed by subsequent specific PCR and sero-

logical analysis.

METHODS

Clinical specimen collection and microarray screening.

On day 4 after hospital admission, an endotracheal aspirate

specimen from the patient was collected in a sterile cup con-

taining a viral culture medium (MEM [Nissui Corporation])

and stored at �80�C. The sample used in the study was ob-

tained according to protocols approved by Stanford University’s

Institutional Review Board. Total RNA obtained from 1 mL of

sample was extracted using RNA-Bee (IsoTex Diagnostics), re-

verse-transcribed to cDNA, amplified by a modified Round A/

B random PCR method, and hybridized to the Virochip as

previously described [2–4]. The Virochip was scanned with an

Axon 4000B scanner (Axon Instruments) and GenePix soft-

ware, version 3.0 (NCBI GEO, series GSE4191).

The third-generation Virochip used here (NCBI GEO, plat-

form GPL3429; ∼22,000 oligonucleotides) was designed using

all partial sequences and fully-sequenced genomes deposited in

the GenBank database as of June 2004 (∼277,000 sequences)

and is a major expansion of the previous second-generation

chip (∼11,000 oligonucleotides) [3], which was designed in

2002 using fully-sequenced reference genomes (∼1000 se-

quences). Importantly for this study, the new microarray design

incorporates partial sequence information from 16 paramy-

xoviridae species for which complete genomic sequences are

not available.

Microarray analysis was performed by ranking the highest

intensity viral oligonucleotides by z-score. The z-score for a

specific oligonucleotide is defined as the distance in SDs of the

oligonucleotide intensity from its median intensity across all

arrays in our database performed to date ( ).n p 1083

Microarray confirmation with PCR and serological

analysis. Microarray evidence of HPIV-4 was confirmed by

PCR of amplified cDNA from the patient’s endotracheal as-

pirate followed by sequencing. Previously published primers

[5–8] were used to amplify segments of the HPIV-4 genome

corresponding to the nucleoprotein, phosphoprotein, and ma-

trix genes. New primer sets were also designed to amplify con-

served regions within the genes coding for the fusion protein

(RUBULA-F1: 5′-TTGCWGGDGTDGYKRTWGG-3′; RUB-

ULA-R1: 5′-TTTGCWGGDGTDGYKRTWGG-3′) and large

protein (PI2-F1: 5′-GAGTAATGAGCATGGTTCAAGGAG-3′;

PI2-R1: 5′-CAGGAAGCTTGAGTACATTCACCTA-3′). The

RUBULA-F1 and RUBULA-R1 degenerate primers were de-

rived from ClustalW sequence alignment of the fusion genes

from parainfluenza 4a, parainfluenza 4b, and mumps viruses,

whereas the PI2-F1 and PI2-R1 primers were derived from the

sequence of the HPIV-2 large protein gene. Each reaction con-

tained 5.0 mL of 10� PCR buffer (Invitrogen Corporation), 2.0

mL of 50 mmol/L MgCl2, 1.0 mL of 10 mmol/L deoxyribonu-

cleoside triphosphates, 1.0 mL of forward primer and 1.0 mL

of reverse primer (10 pmol/mL each), 1 mL of Platinum Taq

DNA polymerase (Invitrogen Corporation; 5 U/mL), and 5.0

mL of template cDNA. Cycling parameters were as follows: 5

min of initial denaturation at 94�C followed by 40 cycles of

denaturation (30 s at 94�C), annealing (45 s at 50�C), and

elongation (60 s at 72�C), with a final extension at 72�C for 8

min. Appropriate positive and negative controls were included

with each reaction, and amplified PCR bands of the expected

size were sequenced on an ABI PRISM 3700 DNA Analyzer

(Applied Biosystems). Sequences were then compared with

HPIV-4 entries in the GenBank database using the BLAST al-

gorithm [9].

Specific serological analysis for HPIV-4 using an indirect

immunofluorescence assay was performed according to estab-

lished protocols as previously reported [10]. Slides prepared

from primary monkey kidney cells that were productively in-

fected with human parainfluenzavirus 4a were used for the

immunofluorescence assay.

Broad-range PCR of lung biopsy tissue. DNA was ex-

tracted from fresh-frozen lung tissue using the QIAamp DNA

Mini Kit (Qiagen). Broad-range bacterial 16S and fungal 18S

rDNA PCR was performed on extracted DNA using bacterial

primers 8F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 806R

(5′-GGACTACCAGGGTATCTAAT-3′) and fungal primers
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Figure 2. Graphic representation of the human parainfluenzavirus 4
(HPIV-4) genome (A). The major viral proteins include the nucleocapsid
protein (NP), phosphoprotein (P), nonstructural V protein (V), matrix protein
(M), fusion protein (F), hemagglutinin-neuraminidase protein (HN), and
large protein (L). The locations of the 6 paramyxovirus oligonucleotides
used to detect HPIV-4 on the microarray are mapped onto the ∼15 kB
genome (B). The corresponding z-score for each oligonucleotide is indi-
cated in parentheses. Five regions of the HPIV-4 virus obtained from a
sample of the patient’s endotracheal aspirate were sequenced (a–e, black
areas), 4 of which are within previously sequenced regions of the genome
(gray areas; C). Below each sequenced region is its percentage of nu-
cleotide identity to the corresponding HPIV-4a sequence in the GenBank
database.

ITS1-F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS1-4R

(5′-TCCTCCGCTTATTGATATGC-3′) [1, 11, 12]. Each reac-

tion contained 5.0 mL of 10� PCR buffer-II (Applied Biosys-

tems), 3.0 mL of 25 mmol/L MgCl2, 2.5 mL of 1% Triton X-

100, 4.0 mL of 250 mmol/L tetramethylammonium chloride,

2.0 mL of 10 mmol/L deoxyribonucleoside triphosphates, 1.0

mL of forward primer and 1.0 mL of reverse primer (20 pmol/

mL each), 0.5 mL of AmpliTaq DNA polymerase (Applied Bio-

systems; 5 U/mL), and 5.0 mL of template DNA. Cycling pa-

rameters were as follows: 5 min of initial denaturation at 95�C,

followed by 35 cycles of denaturation (30 s at 95�C), annealing

(30 s at 56�C), and elongation (60 s at 72�C), with a final

extension at 72�C for 8 min. A mock extraction control was

included throughout the tissue lysis and PCR. Amplified prod-

ucts were verified by gel electrophoresis using 1.0% agarose

gels.

RESULTS

Because conventional diagnostic test results were negative, the

Virochip, a pan-viral DNA microarray, was used to screen for

a possible infectious agent. Traditional methods of microarray

analysis include visual inspection and hierarchical clustering

[13, 14]. Visual inspection involves examination of the viral

identities of the oligonucleotides with the highest intensities,

whereas hierarchical clustering uses a set of microarrays to

group oligonucleotides with similar intensity profiles to identify

patterns that may correspond to a particular virus. Neither

visual inspection nor hierarchical clustering detected a con-

vincing viral signature on the microarray. Thus, we used a new

data analysis method, the z-score metric, which has been im-

plemented in our laboratory for identifying weak viral signa-

tures. The z-score metric estimates the statistical significance

of individual oligonucleotides on the microarray. Manual in-

spection of the top 100 viral oligonucleotides ranked by z-score

revealed a possible paramyxovirus signature, because 6 para-

myxoviridae oligonucleotides were among the top 100 with z-

scores ranging from 2.21–3.71 (figure 2B, 1–6). Four of the

oligonucleotides were derived from human parainfluenzavirus

4a, 1 from human parainfluenzavirus 4b, and 1 from simian

parainfluenzavirus 5, a close relative of HPIV-4. The 6 oligo-

nucleotides mapped to 4 different regions in the HPIV-4 ge-

nome, corresponding to the nucleocapsid protein, phospho-

protein, fusion protein, and large protein (figure 2A and 2B).

The microarray finding of HPIV-4 was then confirmed by

PCR of amplified cDNA obtained from the patient’s endotra-

cheal aspirate specimen. PCR using primers directed to the

fusion gene of HPIV-4 yielded a 473–base pair fragment that

was sequenced and found to share 97% nucleotide identity and

99% amino acid identity with the corresponding region of

HPIV-4a in the GenBank database (figure 2C, d). HPIV-4 se-

quences from the nucleoprotein, phosphoprotein, matrix, and

large protein genes were also obtained by PCR (figure 2C, a–

e). All fragments shared over 92% nucleotide identity with

available HPIV-4 sequences in the GenBank database, including

99% nucleotide identity in the matrix protein—the most con-

served region of the HPIV-4 genome (figure 2C, c).

The diagnosis of HPIV-4 infection was confirmed by ex-

amining antibody titers from patient serum samples that were

collected on days 13, 23, 24, 31, and 51 after symptom onset,

using an indirect immunofluorescence assay (figures 3A and

3B). A specific antibody response against HPIV-4 was observed,

with an 8-fold increase in IgG from day 13 (1:128) to day 24

(1:1024). The HPIV-4–specific IgG titers remained elevated 17

weeks after symptom onset during the patient’s convalescent

phase. In contrast, the results of convalescent-phase serological

analysis for parainfluenzavirus types 1, 2, and 3 performed at

7 weeks were negative, with IgG antibody titers of !1:8 by

complement fixation. Broad-range PCR of extracted lung bi-

opsy DNA using universal bacterial and fungal primers was also

negative.

DISCUSSION

We report a case of HPIV-4 infection in a previously healthy

adult who presented with a life-threatening febrile respiratory

illness. The key to identifying HPIV-4 was examining a broader

range of viral pathogens than is typical of standard clinical

laboratories. The Virochip is particularly well-suited for this

purpose, because it allows the unbiased detection of genomes

from all known viral families in a single assay. Although the
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Figure 3. Detection of antibody to human parainfluenzavirus 4 (HPIV-4)
by indirect immunofluorescence. A, Plot of the patient’s serum HPIV-4
IgG antibody titers over time. The 5 successive time points correspond
to days 13, 23, 24, 31, and 51 after symptom onset, the pink background
outlines the period of hospitalization, and the asterisk designates the
time point corresponding to panel B. The cytoplasm of infected cells
(white arrows) stains green against a background of uninfected cells in
red (B).

Virochip is an experimental research tool, a potential appli-

cation of this new technology, as demonstrated here, is rapid

and comprehensive screening for putative viral pathogens in

the acute clinical setting.

Because the patient was already receiving antibiotics at the

time of admission, negative culture results did not rule out a

concomitant bacterial or fungal infection. However, our neg-

ative results from broad-range PCR of lung biopsy DNA using

universal bacterial and fungal primers argued against this pos-

sibility. Furthermore, the overall clinical picture of a virus-like

upper respiratory infection prodrome, bilateral reticulonodular

pulmonary infiltrates, bronchiolitis on bronchoscopy, and

steady disease progression despite administration of broad-

spectrum antibiotics is most consistent with severe viral bron-

chiolitis/pneumonitis, and not with bacterial pneumonia.

HPIV-4 was identified as a potential candidate pathogen by

microarray and subsequent PCR of an endotracheal aspirate

sample collected on day 4 after hospital admission. Longitu-

dinal studies in children suggest that human parainfluenzavi-

ruses can be shed from the oropharynx for as long as 3–4 weeks

[15]. Thus, it is not surprising that we were still able to detect

HPIV-4 from a specimen collected on day 4 after hospital ad-

mission (which corresponds to ∼14 days after symptom onset).

Nosocomial infection with HPIV-4 is a remote possibility, al-

though a study of patients who received a diagnosis of acute

viral pneumonia in the intensive care unit revealed that nearly

all of these illnesses (11 [92%] of 12) were community acquired

[16]. Moreover, the patient’s HPIV-4–specific IgG antibody ti-

ter was already elevated at 1:128 by day 3 after hospital ad-

mission, making a nosocomial infection with HPIV-4 extremely

unlikely. Despite extensive microbiological testing, no other

pathogen was identified in the patient’s case. The documented

seroconversion that accompanied the clinical infection provides

strong additional support that this virus is the etiologic agent

for the patient’s illness.

HPIV-4 has primarily been associated with mild upper re-

spiratory infections in children and adults. Although serological

evidence suggests that HPIV-4 may account for up to 3% of

all respiratory tract infections [17], the clinical significance of

HPIV-4 in immunocompetent individuals is unknown. Diag-

nosis of HPIV-4 infection is problematic because HPIV-4 is

difficult to isolate in viral cultures, and standard commercial

direct fluorescent antibody panels available in most clinical

virology laboratories include only HPIV-1, -2, and -3 [18]. In

rare instances, HPIV-4 has been shown to cause severe respi-

ratory disease in children [17–19] and immunocompromised

individuals [20], but hitherto, it has not been associated with

acute respiratory failure in healthy, young adults. This case

further expands the documented clinical spectrum of HPIV-4

infection and supports specific testing for HPIV-4 in individuals

with unexplained critical respiratory illness.
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