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ABSTRACT The fungal pathogen Candida auris represents a severe threat to hospital
ized patients. Its resistance to multiple classes of antifungal drugs and ability to spread 
and resist decontamination in healthcare settings make it especially dangerous. We 
screened 1,990 clinically approved and late-stage investigational compounds for the 
potential to be repurposed as antifungal drugs targeting C. auris and narrowed our 
focus to five Food and Drug Administration (FDA)-approved compounds with inhibi
tory concentrations under 10 µM for C. auris and significantly lower toxicity to three 
human cell lines. These compounds, some of which had been previously identified 
in independent screens, include three dihalogenated 8-hydroxyquinolines: broxyquino
line, chloroxine, and clioquinol. A subsequent structure-activity study of 32 quinoline 
derivatives found that 8-hydroxyquinolines, especially those dihalogenated at the C5 
and C7 positions, were the most effective inhibitors of C. auris. To pursue these 
compounds further, we exposed C. auris to clioquinol in an extended experimental 
evolution study and found that C. auris developed only twofold to fivefold resistance 
to the compound. DNA sequencing of resistant strains and subsequent verification 
by directed mutation in naive strains revealed that resistance was due to mutations 
in the transcriptional regulator CAP1 (causing upregulation of the drug transporter 
MDR1) and in the drug transporter CDR1. These mutations had only modest effects on 
resistance to traditional antifungal agents, and the CDR1 mutation rendered C. auris more 
susceptible to posaconazole. This observation raises the possibility that a combination 
treatment involving an 8-hydroxyquinoline and posaconazole might prevent C. auris 
from developing resistance to this established antifungal agent.

IMPORTANCE The rapidly emerging fungal pathogen Candida auris represents a 
growing threat to hospitalized patients, in part due to frequent resistance to multiple 
classes of antifungal drugs. We identify a class of compounds, the dihalogenated 
8-hydroxyquinolines, with broad fungistatic ability against a diverse collection of 13 
strains of C. auris. Although this compound has been identified in previous screens, 
we extended the analysis by showing that C. auris developed only modest twofold to 
fivefold increases in resistance to this class of compounds despite long-term exposure; a 
noticeable difference from the 30- to 500-fold increases in resistance reported for similar 
studies with commonly used antifungal drugs. We also identify the mutations underlying 
the resistance. These results suggest that the dihalogenated 8-hydroxyquinolines are 
working inside the fungal cell and should be developed further to combat C. auris and 
other fungal pathogens. Lohse and colleagues characterize a class of compounds that 
inhibit the fungal pathogen C. auris. Unlike many other antifungal drugs, C. auris does not 
readily develop resistance to this class of compounds.
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C andida auris is a rapidly emerging multidrug resistant pathogen responsible for 
invasive fungal infections in hospitalized patients. Similar to other Candida species, 

C. auris predominately induces candidemia in the immunocompromised and those 
subjected to prolonged hospitalization in intensive care unit wards or long-term care 
facilities. In untreated patients, invasive candidemia has a mortality rate of approximately 
60%, which only improves to approximately 40% with antifungal therapy (1, 2). The 
threat of C. auris is compounded by persistent colonization in previously exposed 
patients and pervasive spread through hospital wards despite multiple rounds of 
decontamination (3, 4). Furthermore, C. auris can spread through long-term care and 
skilled nursing facilities with older and ventilator-dependent patients being especially 
at risk for infection; several C. auris outbreaks associated with COVID-19 treatment units 
have been reported (5–9). This pervasive colonization, in combination with frequent 
resistance to one, two, or even all three major classes of antifungals, makes C. auris a 
growing threat to our most vulnerable patients (10). For these reasons, the World Health 
Organization’s recently released fungal priority pathogens’ list includes C. auris as one of 
four fungal pathogens in the critical (as opposed to high or medium) priority group (11).

C. auris represents a relatively new threat to hospitalized patients. It was first reported 
in Japan in 2009 (12) and was subsequently found to have five clades (I–V) that localize 
to distinct geographic locations (13, 14). The five clades, which are geographically 
represented by South Asia (I), East Asia (II), Africa (III), South America (IV), and Iran 
(V), have different frequencies of antifungal resistance and two distinct mating types 
(13–16). Clades I, III, IV, and V have been linked to outbreaks of invasive infections while 
clade II is more commonly associated with ear infections (17, 18). While specific clades 
typically predominate in different parts of the world, the US, Canada, UK, and Kenya have 
identified infections associated with a range of isolates from multiple clades (16, 19–21). 
Nearly all C. auris isolates are highly resistant to fluconazole; more than half are resistant 
to voriconazole; a third are resistant to amphotericin B; and some isolates are resistant 
to all three major classes of antifungal drugs including the echinocandins caspofungin 
and micafungin (16, 22–26). Given the high mortality, limited treatment options, and 
growing threat to vulnerable patient populations, there is an urgent need to develop 
new antifungal agents to combat C. auris.

Several approaches have been taken to identify new antifungal agents effective 
against C. auris [for more detail on this topic and the current state of the antifungal 
drug development pipeline, see references (27–33)]. The most straightforward approach 
has focused on the evaluation of the effectiveness of the newest members of com
mon antifungal classes (e.g., the echinocandin rezafungin [CD101]) (34, 35). A closely 
related line of investigation has focused on testing the lead compound(s) from new 
classes of potential antifungal agents in development and/or in the clinical testing 
pipeline [e.g., the fungal inositol acylase inhibitor fosmanogepix/APX001 (36–38) and 
the glucan synthesis inhibitor ibrexafungerp/SCY-078 as well as the second generation 
fungerp analog SCY-247 (39–43)]. A broader approach, and one less dependent on 
existing antifungal drug development pipelines, involves screening libraries of Food 
and Drug Administration (FDA)-approved compounds and/or drug like compounds to 
repurpose existing clinical compounds for use against C. auris. These types of screens 
have identified a number of promising compounds, including ebselen, miltefosine, and 
alexidine dihydrochloride. Three of these published screens were conducted with the 
same library (the Prestwick Chemical Library with 1,280 compounds), but the hits from 
these screens were not always concordant (49 different compounds were identified in 
these screens: 3 in all three, 18 in two, and 28 in only one) (44–49).

To identify potential drug repurposing candidates, we conducted a broad primary 
drug screen that examined the effect of 1,990 clinically approved or late-stage 
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investigational compounds on three C. auris strains from the clades most associated 
with invasive infections (I, III, and IV). From the 86 candidate compounds identified 
during this preliminary screen, we found five FDA-approved compounds with half-max
imal inhibitory concentrations (IC50) that were less than 10 µM for C. auris and at 
least an order of magnitude lower in toxicity to three human cell lines. For one of 
these compounds, the 8-hydroxyquinoline clioquinol, we identified mutations conferring 
resistance by growing two C. auris isolates for an extended period in the presence of 
the compound, followed by whole genome sequencing. To prove that the mutations we 
identified caused the resistance, we reconstructed the mutations in a naïve strain (using 
CRISPR-based approaches) and showed they conferred resistance.

RESULTS

The hydroxyquinolines namely broxyquinoline, chloroxine, and clioquinol 
inhibit C. auris growth at submicromolar concentrations

A primary screen of 1,990 compounds, consisting of clinically approved drugs, late-
stage investigational compounds, and drug-like compounds, was performed using three 
strains of C. auris that were selected based on their range of resistance to the three 
main classes of antifungal agents and to represent the three clades most associated 
with invasive infections (Fig. 1A). Strain AR-387 (B8441/MLY1543) originated in Pakistan, 
belongs to clade I, and is susceptible to fluconazole, caspofungin, and amphotericin 
B. Strain AR-386 (B11245/MLY1542) originated in Venezuela, belongs to clade IV, is 
susceptible to both caspofungin and amphotericin B but resistant to fluconazole. Strain 
AR-384 (B11222/MLY1540) originated in South Africa, belongs to clade III, is susceptible 
to amphotericin B and resistant to both fluconazole and caspofungin.

These three strains were screened for growth inhibition at two concentrations (1 µM 
and 10 µM) of drugs from the Selleck Chem FDA-Approved Drug Library (#L1300, 1,591 
compounds) and the Medicines for Malaria Venture Pandemic Response Box (399 
compounds) (Fig. 1A). Compounds with a B-score [a non-control based method account
ing for systematic errors including plate position effects (50, 51)] greater than 0.1 and 
greater than 50% inhibition (measured by optical density at 600 nm [OD600]) were 
considered initial hits (Fig. 1B; File S1). The 86 initial hits include 10 established standard-
of-care compounds for fungal infections, 44 compounds active against only two of the 
three C. auris strains tested, and 32 compounds active against all three (Fig. 1B; File S1). A 
secondary screen was performed to confirm the antifungal activity observed in the 
primary screen and to estimate the half maximal inhibitory concentrations (IC50s) for 
these compounds (Fig. 1C). All 86 compounds were screened at eight concentrations 
ranging from 0.3 to 100 µM against the same three strains (AR-387, AR-386, and AR-384) 
(Fig. 2A; File S1). We then selected 11 compounds that had estimated IC50s less than 
10 µM in this secondary screen and did not belong to the three main known classes of 
antifungal drugs. Three additional compounds (sirolimus, everolimus, and temsirolimus) 
met these criteria, but were not selected for further investigation because of their known 
immunosuppressive activity.

An optimal drug candidate would have antifungal activity against a wide range of C. 
auris isolates at concentrations that are not toxic to human cells. To determine if any of 
the 11 selected compounds fulfilled these criteria, IC50s were determined for 16 Candida 
strains, including 13 C. auris strains, covering all five clades, and one strain each of 
Candida albicans, Candida glabrata, and Candida dubliniensis. The IC50s of these 11 
compounds were also determined for three common human cell lines, HEK293 (kidney), 
HEPG2 (liver), and HFF1 (fibroblast) (Fig. 1C). Of the 11 compounds, five had IC50s that 
were at least 10-fold less than their lowest IC50 for human cells, suggesting the possibility 
of a therapeutic window (Fig. 2B). These five compounds included three hydroxyquino
lines, broxyquinoline, chloroxine, and clioquinol, and two anti-protozoals, miltefosine 
and triclabendazole (Fig. 2B). We observed a smaller range of IC50s across the 13 C. auris 
strains for miltefosine (minimum IC50 1.5 µM, maximum IC50 4.9 µM, threefold range), 
broxyquinoline (minimum IC50 0.16 µM, maximum IC50 0.33 µM, twofold range), 
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chloroxine (minimum IC50 0.39 µM, maximum IC50 0.94 µM, twofold range), and 
clioquinol (minimum IC50 0.12 µM, maximum IC50 0.58 µM, fivefold range) than many 
traditional antifungal agents, for example, caspofungin (minimum IC50 0.15 µM, maxi
mum IC50 73 µM, 500-fold range) and posaconazole (minimum IC50 0.01 µM, maximum 
IC50 0.43 µM, 43-fold range) (Fig. 2B; File S1). In other words, the IC50s for the compounds 
identified in the screen were more consistent across the different C. auris strains than 
were the IC50s for many of the existing antifungals. These results are broadly consistent 
with previous repurposing screens, which have reported effectiveness by miltefosine 
(46), several different hydroxyquinolines including chloroxine and clioquinol (45–47, 49, 
52–54), as well as pentamidine (one of the six compounds that performed poorly in our 
human cell toxicity tests) (44, 46). Although 12 of the 13 C. auris strains were taken from 
the Centers for Disease Control and Prevention’s Antibiotic Resistance Isolate Bank 
Candida auris panel, this panel encompasses a wide range of susceptibilities to different 
antifungal agents and, as such, we believe these results are broadly applicable to C. auris.

FIG 1 A screen of 1,990 clinically approved and investigational compounds for in vitro inhibition of C. auris identified 86 candidates for further evaluation. 

(A) Workflow for the primary screening of 1,990 clinically approved and investigational compounds for in vitro inhibition of three C. auris strains; compounds 

were screened at both 1 µM and 10 µM. (B) The percent inhibition relative to untreated controls (DMSO or water alone) for each compound at 10 µM. For each 

compound, the lowest percent inhibition achieved against any of the three screened C. auris strains is plotted on the x-axis and the average percent inhibition 

against the other two strains is plotted on the y-axis. Compounds in the upper left quadrant effectively inhibited two of the three C. auris strains and compounds 

in the upper right quadrant effectively inhibited all three strains. (C) The secondary screening pipeline for the 86 compounds identified in the initial screen for 

their ability to inhibit at least two of the three C. auris strains by at least 50%. Additional screening monitoring inhibition of additional C. auris strains, other 

Candida species, and lack of toxicity to human cells yielded five highly selective candidates (see Fig. 2). Figures 3 and 4 detail additional criteria depicted in the 

flow chart.
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C. auris develops only moderate resistance to clioquinol despite extended 
exposure

C. auris has repeatedly demonstrated a propensity for rapid acquisition of resistance 
when exposed to antifungal drugs. Indeed, experimental evolution studies have 
produced 30-fold to more than 500-fold increases in resistance to fluconazole or 

FIG 2 Secondary screening and selectivity measurement identified five promising compounds, including three hydroxyquinolines. (A) In the secondary screen, 

the results with 31 of the 86 hits identified in the primary screen did not repeat and were eliminated from further consideration. IC50 values against three C. 

auris strains for the remaining 55 compounds were calculated from 8-point dose-response curves. Points represent the mean of three biological replicates, error 

bars represent the standard error of the mean, and upwards arrows indicate IC50 values greater than the highest concentration tested, 100 µM. Representative 

standard-of-care compounds used to treat fungal infections are indicated in orange. (B) IC50 values for four standard-of-care drugs and five finalists from the 

screen against 13 C. auris strains, strains from three additional Candida species, and three human cell lines. Pink shaded regions mark concentrations above the 

lowest observed IC50 for that compound against a human cell line. Values represent the IC50 calculated from three biological replicates, error bars represent the 

95% confidence interval, and right-pointing arrows indicate IC50 values greater than 1,000 µM.
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caspofungin in as few as two or three 24- or 48-h passages (55–57). To evaluate 
the ability of C. auris to develop resistance to clioquinol, and to assess the resulting 
determinants of resistance, two independent cultures of C. auris AR-384 (discussed 
above) and one culture of AR-390, another clade I strain with greater resistance to 
fluconazole and amphotericin B than AR-387, were serially passaged 30 times (roughly 
150–200 generations) in the presence of increasing concentrations of clioquinol, ranging 
from 0.4 to 0.75 µM at the start to 2.8-4.4 µM at the end (Fig. 1C). By the end of the 
drug selection, the clioquinol IC50 increased 2.4- and 5.2-fold relative to parental strains 
(from 0.75 μM to 1.80 μM and from 0.29 μM to 1.48 μM) in the AR-384 and AR-390 
backgrounds, respectively (Fig. 3A and B). The IC50 increases occurred over multiple 
steps, showed some variation in the rate of resistance evolution, and leveled off around 
passage 16 for each culture (Fig. 3A). Notably, the degree of resistance arising from 
more than 2 months of exposure to clioquinol was less than that has been observed 
for fluconazole or caspofungin over shorter time frames. Furthermore, the clioquinol-
evolved strains remained susceptible to clioquinol concentrations at least fivefold below 
the minimal toxic concentrations observed for human cells.

Mutations in the genes CAP1 and CDR1 arose during extended clioquinol 
exposure and are the cause of resistance

The resistance of the evolved strains persisted when these strains were regrown for 
several days in the absence of clioquinol, indicating that resistance was linked to one or 
more genome mutations rather than a reversible, physiological response to clioquinol. To 
test this hypothesis and identify the determinant(s) of clioquinol resistance, we per
formed whole genome sequencing on two single colony isolates from the endpoint of 
the resistance experiment for each of the three cultures as well as from populations 
harvested from selected intermediate points. We observed premature termination 
mutations in the C-terminal end of the transcriptional regulator CAP1 (B9J08_005344/
CJI97_005427) by the eighth passage in all three cultures (16 days growth or approxi
mately 35 to 40 generations) (Fig. 3A). Each mutation was distinct (E398* in AR-390; 
either E441* or an 8 bp deletion resulting in T387* in AR-384) and was in 76% to 98% of 
the population sample reads at passage eight. The same CAP1 mutations were in 96% to 
98% of population sample reads and in all six single cell samples at the endpoint of the 
experiment. CAP1 mutations were not observed in the dimethyl sulfoxide (DMSO) 
treated control cultures that were grown and sequenced in parallel. Based on additional 
experiments described below, we believe these truncation mutations produce hyperac
tive Cap1 proteins.

Sometime after the eighth passage (by passage 12 in AR-390 and between passages 8 
and 31 in AR-384), additional mutations arose in the ATP-binding cassette drug trans
porter CDR1 (B9J08_000164/CJI97_000167). The mutations in this gene were different in 
the three cultures, and likely result in loss of function of the gene (see below; E722* in 
AR-390; K909N or Q415* in one AR-384 culture; and Q548* or an 8 bp deletion whose 
resulting frame shift affected 34 different amino acids at aa343–376 before a premature 
stop codon at aa377 in the other AR-384 culture) (Fig. 3A). These CDR1 mutations were 
not as prevalent in the populations as the CAP1 mutations, comprising between 25% and 
97% of reads in population samples and were observed in only four of the six single-cell 
endpoint samples. No CDR1 mutations were observed in the DMSO-treated control 
cultures. We note that the apparent selective pressure to inactivate the CDR1 drug pump 
suggests that hydroxyquinolines function against C. auris, at least in part, at the cell 
surface or inside the cell rather than by chelating soluble iron, copper, or zinc in the 
media, consistent with a previous report that hydroxyquinolines sequester metals in 
Saccharomyces cerevisiae’s plasma membrane (58). It may seem paradoxical that inacti
vating a drug pump results in increased resistance—rather than susceptibility—to 
clioquinol; however, in addition to exporting drugs, CDR1 has been implicated in the 
translocation of phosphoglycerides from the internal to the external plasma membrane 
(59, 60). In principle, the hydroxyquinolines could be affecting another function of Cdr1 
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instead of, or in addition to, exporting drugs from the cell. It is also possible that Cdr1 
functions to import hydroxyquinolines into the cell.

To determine whether the CAP1 or CDR1 mutations were indeed causal for increased 
clioquinol resistance, the CAP1 E398* and the CDR1 E722* mutations were introduced 
by CRISPR-Cas9 gene editing into the parental strains AR-390 and AR-387. The CAP1 
E398* mutation caused an increase in resistance of 1.7- to 1.8-fold to clioquinol in both 
strains (Fig. 3B), similar to that observed for the evolved CAP1* strains, indicating that 
the CAP1 mutation is the cause of resistance in the evolved strains. Introducing the 
CDR1 E722* mutation did not significantly affect clioquinol resistance in AR-387 (nor did 
deletion of CDR1) but it did increase resistance 1.9-fold in AR-390 (Fig. 3B). Thus, the CAP1 
truncation (which results in a gain-of-function mutation, see below) can explain much of 

FIG 3 C. auris developed 2- to 5-fold resistance to clioquinol in an extended evolution experiment due to mutations in the transcriptional regulator CAP1 

and the CDR1 drug pump. (A) Clioquinol IC50 against C. auris isolates that were selected in the presence of clioquinol. Parallel cultures were grown with serial 

passaging of strains AR-384 (blue, two independent cultures) and AR-390 (black, one culture) in the presence of clioquinol or vehicle control (DMSO; grey). Whole 

genome sequencing was performed for a subset of C. auris passage populations or single cells isolated from the cultures and selected mutations identified are 

indicated. Error bars represent the standard error of the mean. (B) Comparison of clioquinol’s IC50 against parent, evolved, and CRISPR/Cas9 engineered C. auris 

mutant strains from three different backgrounds. The fold-changes in IC50 between relevant related strains are shown; the statistical significance of observed 

differences as determined with unpaired t-tests (two-tailed, equal variance) is indicated. Error bars represent the standard deviation. (C) Changes in expression of 

the CDR1, CDR2, and MDR1 drug pump genes in evolved and CRISPR/Cas9 engineered C. auris CAP1 and CDR1 mutant strains from three different backgrounds 

in the absence of clioquinol. Gene expression changes are shown as the Log2 fold-change relative to the parental (WT) strain for that background. Statistical 

significance was determined with unpaired t-tests (two-tailed, equal variance, *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). Error bars represent the standard 

deviation. (D) Comparison of IC50 values for five other drugs against parent, evolved, and CRISPR-Cas9 engineered mutant C. auris strains. Values represent the 

mean of three independent experiments; error bars represent the standard error of the mean.
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the clioquinol resistance that arose during the experimental evolution; the subsequent 
CDR1 mutation (which likely results in a loss-of-function) could account for the smaller 
resistance increases observed later in the experiment.

CAP1 truncation results in increased MDR1 expression

Cap1 is a transcriptional regulator. In C. albicans, it promotes expression of the major 
facilitator superfamily drug transporter MDR1, and it has been reported that C-termi
nal truncations of CAP1, like those we isolated from our drug-resistance screen, cause 
a hyperactive phenotype which increases MDR1 expression and thereby increases 
fluconazole resistance (61–64). To test whether this is also the case with our resistant 
C. auris CAP1 mutants, we used quantitative reverse transcription-polymerase chain 
reaction (RT-qPCR) to examine the levels of MDR1 expression along with two other 
drug transporters: CDR1 and CDR2. We found that MDR1 expression had increased 
more than 50-fold by passage 8 in the AR-384 background compared to the starting 
strain and remained at this level at the end of the experiment (Fig. 3C). In the AR-390 
background, where baseline expression began roughly 30-fold lower than AR-384, MDR1 
expression increased nearly 300-fold compared to the starting strain by passage 8 and 
over 1,500-fold by the final selection passage, reaching a similar level to the evolved 
AR-384 strains (Fig. 3C). In contrast to MDR1, expression of CDR1 and CDR2 changed only 
minimally during the course of the selection experiment (1.7-fold down and 1.1-fold up 
in AR-384, 1.4-fold down and 7-fold down in AR-390, respectively) (Fig. 3C). We note that 
we profiled transcript levels in the cells in the absence of clioquinol; thus, the changes 
we observed are due to the mutations and are not dependent on the presence of the 
compound.

To verify these results, transcript levels were also assessed in the mutant stains 
constructed in the AR-387 and AR-390 strain backgrounds, again in the absence of 
clioquinol. Consistent with the results for the evolved strains, the replacement of the 
wild-type CAP1 with the CAP1 E398* mutation resulted in minimal expression change for 
CDR1 and CDR2, but 150- and 390-fold increases in MDR1 expression in the AR-387 and 
AR-390 strain backgrounds, respectively (Fig. 3C). The results of these experiments show 
that MDR1 expression is significantly increased by truncation mutations in CAP1 both in 
the evolved strains and the genetically modified strains.

The link between MDR1 transcript levels and susceptibility to clioquinol is also 
supported by recent work on the transcriptional regulator Mrr1. Two independent 
studies reported that a hyperactive Mrr1 allele (N647T) found in several clade III C. auris 
isolates results in upregulation of MDR1; of particular interest is the observation that 
MDR1 transcript levels are approximately 18-fold higher in the clade III strain AR-383 
than the clade I strain AR-390 (65, 66). Consistent with increases of MDR1 expression 
reducing clioquinol susceptibility, we note that AR-383 is less susceptible to clioquinol 
than AR-390 (IC50 of 0.56 µM versus 0.12 µM, File S1).

Extended clioquinol exposure has only modest effects on resistance to 
traditional antifungal agents

The CAP1 truncation mutations that arose in response to clioquinol could plausibly 
produce resistance to the existing antifungal agents used to treat C. auris infections. 
Conversely, given the role of CDR1 in azole resistance (48, 67–71), the CDR1 muta
tions that arose in our drug-resistant cultures could increase susceptibility to existing 
antifungal agents. To test this hypothesis, the susceptibilities of the evolved strains to 
a second hydroxyquinoline, broxyquinoline, and to the traditional antifungal agents 
voriconazole, posaconazole, micafungin, and amphotericin B were determined. As 
expected, the modest clioquinol resistance was also observed for the structurally 
similar broxyquinoline (Fig. 3D). Clioquinol resistance had only a subtle, if any, effect 
on susceptibility to amphotericin B, modestly increased susceptibility to micafungin 
(fourfold), and modestly increased (less than threefold) resistance to the azole vorico
nazole (Fig. 3D). An unexpected property of the evolved strains containing the CDR1 
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loss-of-function mutation was its 10-fold greater susceptibility to the azole posaco
nazole (Fig. 3D). These findings indicate that, for C. auris, mutations resulting from 
long-term exposure to clioquinol will not necessarily result in increased resistance to 
commonly used antifungal agents. Indeed, these observations suggest that combining 
an 8-hydroxyquinoline with posaconazole might leave C. auris especially vulnerable to 
the latter.

A variety of dihalogenated hydroxyquinolines inhibit C. auris

As described above, three hydroxyquinolines with submicromolar antifungal activity 
against C. auris were identified in our screen. To evaluate the structure-activity rela
tionship (SAR) of this class of compounds, the activities of 32 quinoline derivatives 
(29 compounds plus clioquinol, broxyquinoline, and chloroxine, the three identified in 
the screen) were tested against three strains of C. auris (AR-387, AR-384, and AR-386) 
(Fig. 1C). Seventeen of these compounds showed activity against all three C. auris 
strains tested. All active compounds except for one [1,10-phenanthroline monohydrate] 
were hydroxyquinolines, which have a hydroxide at C8 position (Fig. 4A; File S1). Five 
compounds, including clioquinol, broxyquinoline, and chloroxine, had an IC50 less than 
1 µM; all five of these compounds were dihalogenated at the C5 and C7 positions, 
suggesting the importance of these modifications in antifungal activity. Compounds 
with single halogen or other chemical groups at either the 5- or 7-positions generally 
had an IC50 in the 2 to 20 µM range, only four of the 20 compounds with a hydroxide 
at C8 position lacked activity against C. auris. Eleven of the 12 compounds without an 
8-position hydroxy group tested lacked activity against C. auris (Fig. 4A; File S1). We note 
that these trends are largely consistent with those previously reported for halogenated 
hydroxyquinoline activity against several fungal species, none of which were Candida 
(72–74).

Previous studies (including transcriptional profiling, enzyme activity assays, and 
cellular metal abundance quantification using inductively coupled plasma mass 
spectrometry) showed that S. cerevisiae cells treated with clioquinol behave as if they are 
starved for iron, copper, and zinc. These metals are sequestered in the plasma membrane 
and depleted in the cytosol of S. cerevisiae cells exposed to clioquinol (58, 75, 76). To 
investigate this effect with respect to C. auris, clioquinol treated cells were grown in the 
presence of excess iron, copper, or zinc (Fig. 1C). The addition of excess iron (either Fe2+ or 
Fe3+) or, to a lesser extent, copper, to clioquinol-treated media mitigated the inhibitory 
effects of the drug and restored growth (Fig. 4B and C). Increasing concentrations of Cu2+, 
Fe2+, or Fe3+ strongly correlated with increased clioquinol IC50, indicating that the 
increase in C. auris viability is concentration dependent (Fig. 4C). Increasing concentra
tions of Zn2+, on the other hand, had no effect on clioquinol IC50 (Fig. 4C). Addition of 
excess iron or copper also restored growth in the presence of several other 8-hydroxyqui
nolines (Fig. 4B). These effects were independent of the order of addition: either 
introducing iron to C. auris cells that had been pretreated with clioquinol for 21 h or 
introducing metals to clioquinol-treated media prior to C. auris inoculation permitted 
growth (Fig. 4B; Fig. S1A).

We note that the reversal of the inhibitory effects of hydroxyquinolines by exoge
nously added metals could be due, at least in part, to simply lowering the free concentra
tion of hydroxyquinolines in the media. In this regard, the concentration of metals 
needed to overcome the inhibitory effects is in the same range as the concentrations of 
hydroxyquinolines needed to inhibit C. auris. The exact mechanisms by which hydroxy
quinolines inhibit C. auris growth remain to be determined. It is a plausible hypothesis 
that the inhibitory effects arise from metal sequestration within the cell, perhaps in the 
fungal plasmid membrane as observed in S. cerevisiae (58). This idea is consistent with 
our observations that drug pump expression plays a role in the mechanism of resistance.
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Clioquinol is fungistatic to C. auris

Previous reports have reached different conclusions as to whether clioquinol is 
fungistatic or fungicidal against Saccharomycotina species such as S. cerevisiae or C. 
albicans (77, 78). We quantified, by plating assays, the viability of C. auris cells treated 
with clioquinol for 22 h and found that viability changed little relative to DMSO-treated 

FIG 4 Out of the 32 SAR compounds (including clioquinol), dihalogenated 8-hydroxyquinolines were the most effective inhibitors of C. auris, and their activity 

is mitigated by excess iron or copper in the growth medium. (A) IC50 of clioquinol and 16 structural analogs against three C. auris strains. Clioquinol (upper 

left inset) is composed of a quinoline core with a 5-position chlorine, 7-position iodine, and 8-position hydroxy group, the functional groups at these and other 

positions are indicated for each of the structural analogs. A further 15 clioquinol analogs (not shown) were tested and lacked activity against C. auris. Error bars 

represent the standard error of the mean. (B) Heat map of C. auris growth (with and without 8-hydroxyquinoline compounds) in the presence of 10 µM metal 

ions. The effects of metal chelators EDTA and TPEN were also analyzed. The 8-hydroxyquinolines and the metal chelators inhibited growth (red on heat map) and 

addition of iron or copper mitigated these effects in at least some strains. (C) Relationship between supplemented metal concentration and clioquinol IC50. The 

linear regression line is shown for each metal. The points represent the mean of three independent experiments; error bars represent the standard error of the 

mean.
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controls (Fig. S1B). As such, we conclude that clioquinol is fungistatic, rather than 
fungicidal, to C. auris, at least in the 22-h time frame examined.

DISCUSSION

C. auris represents a growing threat to hospitalized patients due to (1) the inherent 
resistance of many strains to one or more of the three major classes of antifungal drugs 
used in the clinic, (2) the propensity for susceptible C. auris strains to rapidly develop 
resistance to standard antifungal treatments, and (3) its ability to spread and resist 
decontamination in healthcare settings. We screened 1,990 compounds for the potential 
to be repurposed as antifungal agents targeting C. auris. Among the most promising hits 
from this screen were the dihalogenated hydroxyquinolines broxyquinoline, chloroxine, 
and clioquinol. A further structure-activity relationship study identified two additional, 
related compounds. Dihalogenated hydroxyquinolines have been identified in other 
small molecule screens for activity against C. auris, and we pursued this class of 
compounds further.

The five hydroxyquinolines mentioned above had IC50s less than 1 µM and are 
especially interesting candidates for repurposing. First, the clinical isolates we tested (13 
strains, including representatives of all five known clades) exhibited similar susceptibili
ties to 8-hydroxyquinolines suggesting that, unlike traditional antifungal drugs, there is 
little inherent resistance to the hydroxyquinolines. Second, although the dihalogenated 
hydroxyquinolines were the most efficient hydroxyquinolines in our SAR screen, a wide 
range of chemical space in this family remains to be explored (e.g., different side groups 
at C2 and different active groups replacing the halogen at C5 or C7). Further under
scoring the potential of this chemical space, the antimalarial compound mefloquine (a 
quinolinemethanol derivative with a core structure similar to the 8-hydroxyquinolines) 
also has broad spectrum antifungal activity (79). Third, several hydroxyquinolines have 
(or have had) both topical and oral forms (for use against dandruff and scalp dermatitis, 
eczema, fungal skin infections, and infectious diarrhea caused by protozoa or Shigella 
bacteria) suggesting that hydroxyquinolines might be effective against both internal 
and skin-based infections. Finally, the hydroxyquinolines are of interest because, as 
shown here, C. auris develops only mild resistance, despite long-term exposure in 
our experiments. The roughly twofold- to fivefold increases in resistance we observed 
remain well below the minimum toxicities seen for human cells and are significantly 
less than the 30- to 500-fold increases in resistance reported for similar studies with 
fluconazole or caspofungin, two of the most widely used antifungal drugs (55–57). 
Furthermore, hydroxyquinoline resistance resulted in only modest, if any, increases in 
resistance to other antifungal agents, and it led to increased susceptibility to at least one 
antifungal agent in common use, posaconazole. The possibility exists that a combination 
treatment involving a hydroxyquinoline and posaconazole might leave C. auris trapped 
between increasing CDR1 expression to resist posaconazole, becoming more susceptible 
to the hydroxyquinoline, or decreasing CDR1 expression to resist the hydroxyquinoline, 
becoming more susceptible to posaconazole, a hypothesis that is amenable to testing in 
animal models and in culture.

When considering repurposing the hydroxyquinolines as a treatment for C. auris, it 
is important to note that an oral version of clioquinol was withdrawn from usage as 
an antiparasitic in the early 1970s following a report associating it with an outbreak of 
subacute myelo-optic neuropathy (SMON) in Japan (80–83). Since that time, however, 
the data in the report linking SMON and clioquinol have been questioned; it has been 
noted that similar associations did not occur in countries with higher clioquinol usage 
at the time and that many of the patients developing SMON had not taken clioquinol 
prior to the onset of symptoms (84, 85). As such, there has been recent interest in using 
clioquinol to treat both Alzheimer’s disease and cancer (58, 76, 80, 81, 86–89). The work 
reported here suggests that clioquinol and its derivatives could also be developed as 
effective antifungal agents, particularly against the emerging pathogen C. auris.
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Although our results are consistent with the idea that 8-hydroxyquinolines may be 
able to be repurposed as a treatment for C. auris (along with other Candida species), 
several considerations remain to be addressed. First, our resistance study was focused 
on C. auris strains that were resistant to one or more traditional antifungal agents. There 
remains the possibility that more susceptible C. auris strains might develop different 
mechanisms of resistance to clioquinol. Given the scale of these experiments (three 
cultures from two strains), it is also possible that other potential resistance mechanisms 
could arise even in those strains we tested (e.g., hyperactive mutations of MRR1). 
The second major consideration relates to the therapeutic indexes observed for the 
8-hydroxyquinolines. A therapeutic index of 10, or five in the case of the evolved resistant 
strains, is not optimal and raises questions about the use of this family of compounds 
in the host. We note, however, that the therapeutic indexes reported here are always 
the lowest value observed, representing the most conservative position possible. It has 
been shown that clioquinol concentrations of 13 to 25 µM in serum are achievable for 
several months with few or no side effects (90); this would correspond to a therapeutic 
index of 20 to 200 (or even wider). The third major consideration relates to the mitigation 
of clioquinol’s effect when metals, especially iron, are present at high concentrations 
in the growth medium. As the concentration of iron has been reported to be as high 
as 25 mM in the gut in a rat model (91), this raises the possibility that physiological 
iron concentrations in some host niches could render clioquinol (and other 8-hydroxy
quinolines) ineffective. It is important to note, however, that the same study found that 
only a small portion of iron, 0.4 mM, was freely available in solution (91). Furthermore, 
the aforementioned clioquinol serum concentrations were achieved through oral dosing 
(90), suggesting that free iron in the gut does not present an insurmountable barrier. 
In regards to both the second and third concerns, it is important to note that multiple 
8-hydroxyquinolines have established abilities to treat bacterial, fungal, and parasitic 
infections in a number of contexts (e.g., topical and internal usage); this indicates that 
neither the low therapeutic indexes nor inhibition by iron should, a priori, be used to 
rule out the potential for this family to be used as part of a C. auris treatment regime. 
Consistent with this, we note that the related hydroxyquinoline nitroxoline (which had 
an IC50 of 1.6 to 3.6 µM against C. auris in our SAR studies) has recently been reported 
to be effective at treating granulomatous amebic encephalitis caused by the amoeba 
Balamuthia mandrillaris (92). Finally, although general effects associated with clioquinol 
treatment have been reported [e.g., metal starvation and/or abnormal metal storage (58, 
75, 76)], we wish to stress that we do not know the detailed mechanism of action for this 
family of compounds against C. auris. Further work to discern the mechanism of action 
could lead to a deeper understanding of mechanisms of resistance, the identification of 
vulnerabilities in fungal defenses, and the development of more effective compounds in 
the 8-hydroxyquinoline class.

MATERIALS AND METHODS

Drug libraries

The primary screen in this study used both the Selleck Chem FDA-Approved Drug Library 
(#L1300, 1,591 compounds) and the Medicines for Malaria Venture Pandemic Response 
Box (399 compounds). Details about the sources of drugs for subsequent assays can be 
found in File S2.

Media

Cells were allowed to recover from glycerol stocks for at least 2 days at 30°C on 
yeast extract peptone dextrose (YEPD) plates (2% Bacto peptone, 2% dextrose, 1% 
yeast extract, 2% agar). Unless otherwise noted, overnight cultures for assays, recovery 
dilutions, and assays were performed in Roswell Park Memorial Institute (RPMI)-1640 
media (containing L-glutamine and lacking sodium bicarbonate, MP Biomedicals 
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#0910601) supplemented with 34.5 g/L MOPS (Sigma M3183) and adjusted to pH 7.0 
with sodium hydroxide before sterilizing with a 0.22 µm filter.

Strains

A full list of strains used in this study can be found in File S2. Twelve of the 13 
C. auris isolates used in this study were acquired from the Centers for Disease Con
trol and Prevention’s Antibiotic Resistance Isolate Bank Candida auris panel (https://
wwwn.cdc.gov/ARIsolateBank/Panel/PanelDetail?ID=2). The remaining C. auris isolate 
was a previously reported isolate from a patient at UCSF; this strain is a member of clade 
I that has some resistance to fluconazole (MIC 32 µg/mL) and was provided by the UCSF 
Clinical Laboratories at China Basin (93), this strain is available from us upon request. 
For C. albicans (SC5314), Candida dubliniensis (CD36), and Candida glabrata (CBS138), 
we used the sequenced strains SC5314, CD36, and CBS138/ATCC 2001, respectively. 
SC5314 was isolated from a patient with disseminated candidiasis prior to 1968 (94–97), 
CD36 was isolated from the mouth of an Irish HIV patient between 1988 and 1994 
(98), and CBS138 is listed as coming from a fecal sample (https://www.atcc.org/prod
ucts/all/2001.aspx#history). Unless otherwise noted, assays used the same three C. auris 
isolates (AR-384/MLY1540, clade III; AR-386/MLY1542, clade IV; AR-387/MLY1543, clade 
I) to ensure representation of the three clades most associated with serious infections 
as well as wide distribution of susceptibilities to fluconazole and caspofungin. A fourth 
isolate, AR-390/MLY1546 from clade I was included as the second strain, in addition to 
AR-384/MLY1540, in the experimental evolution experiment.

A full list of oligonucleotides and plasmids used for the construction of strains can 
be found in File S2. Strain construction took place in the AR-387 and AR-390 C. auris 
strain backgrounds following previously described methods using the hygromycin B 
resistance selectable marker (99). gRNA was designed using the gRNA selection tool in 
Benchling with the following parameters: “Single guide,” “Guide Length” of 20, “PAM” 
of NGG with the C. auris B8441 (AR-387) reference genome. The gRNA fragments were 
amplified from pCE41 while the Cas9 construct was prepared by digesting pCE38 with 
the restriction enzyme MssI. The repair template was created by amplifying genomic 
DNA and amplicons were subsequently stitched together with an additional round of 
PCR cycling to create full-length repair template integrating the desired mutation or 
deletion. When constructing a gene deletion strain, a unique 23 bp ADDTAG (CGAGAC
GAGTGCTCGACATGAGG), which includes a 20 bp gRNA recognition sequence and PAM, 
was inserted at the location of the gene for any subsequent downstream edits at 
this locus (100, 101). Synonymous and non-synonymous mutations were introduced 
using the PCR stitching method and the mutations are denoted by lowercase letters 
in the oligo sequences described in File S2. The protospacer adjacent motif (PAM) 
NGG and gRNA recognition sequence were mutated to ablate further cutting by Cas9. 
Transformations used a lithium acetate competence/heat shock-based protocol with 
a 4-h recovery before plating on yeast extract-peptone dextrose (YPD) + hygromycin 
(HYG) 600. Potentially successful transformations were verified by colony PCR. In order to 
confirm the presence of desired mutations, DNA for sequencing was extracted using 
a Quick-DNA Fungal/Bacterial Miniprep Kit (Zymo Research D6005) coupled with a 
Mini-BeadBeater 16 (Biospec Products); bead beating consisted of two 4-min cycles 
separated by a 5-min incubation on ice.

Antifungal susceptibility testing

Antifungal susceptibility testing assays were performed as follows. Overnight cultures 
(3 mL, in test tubes) were started in RPMI-1640 media on a roller drum at 30°C from 2- 
to 3-day-old colonies grown on YPD agar plates. The following morning, the OD600 of 
the overnight cultures was determined, cultures were diluted back to OD600 = 0.25 in 
fresh RPMI-1640, and the diluted cultures were allowed to recover at 30°C for at least 3 h. 
After the recovery growth step, the OD600 of the recovery cultures was determined and 
the cells were diluted to an OD600 = 0.00357 in fresh RPMI-1640. Adding of 21 µL of the 
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OD600 = 0.00357 resuspension to 54 µL of media/drug mixture in each well resulted in a 
starting density of OD600 = 0.001 or approximately 1 × 104 cells/mL.

Fifty-four microlitres of media was dispensed into wells (in two 27 µL steps) using 
a BioMek FX (Beckman-Coulter). Drugs, DMSO loading controls, and other compounds 
(e.g., metals) were then dispensed into the media using a Labcyte Echo 525. The 21 µL 
of cell solution was then added to the 54 µL of media/drug mixture using a BioMek 
FX. Assays were performed in transparent, sterile, flat-bottomed, non-tissue culture 
treated 384-well microtiter plates (Thermo 242765 or 242757) that were sealed with 
Breathe-Easy sealing membranes (Diversified Biotech, BEM-1) immediately following 
inoculation. Plates were then incubated at 35°C in a humidified incubator (with 0.1% 
CO2) for 24 h. After the 24-h incubation, the absorbance (OD600) was determined on 
a prewarmed (35°C) Tecan Spark10M, taking one read per well. In all experiments, the 
percent inhibition was determined by first subtracting the background OD600 (culture 
wells filled with media only) from the test well OD600, and then normalizing to the 
average OD600 of untreated (vehicle only) control wells cultured side-by-side with the 
test wells. The percent inhibition was then calculated using the following equation: 
% inhibition = 100 × [1 − (test well OD − background OD)/(untreated control OD − 
background OD)].

Primary screening

Initial screening was conducted with the three primary C. auris strains. All 1,990 
screening compounds were evaluated for in vitro efficacy at concentrations of 1 and 
10 µM. For each of the strains, a single well was evaluated for each compound at each 
concentration. The efficacy of each compound was determined by comparison to the 
average of untreated control wells on the same culture plate as the tested compounds. 
Compounds with greater than 50% inhibition of C. auris growth for at least two of the 
three tested strains and a B-score [a non-control based method for systematic error 
correction which accounts for position effects, see references (50, 51) for further details] 
greater than 0.1 were selected as hits for further evaluation (86 compounds total). The 
raw data for this experiment are included in File S3.

Secondary drug screening and IC50 determinations

The activity of 86 primary hit compounds was validated against the three primary C. 
auris strains with dose-response growth inhibition experiments. Drugs were dispensed 
into test wells using the Labcyte Echo 525 liquid handler to generate 8-point concentra
tion ranges from 0.3 to 100 µM. All drugs were resuspended in DMSO and compared 
to appropriate vehicle-only controls. Dose-response experiments were performed with 
two biological replicates, each consisting of two technical replicates. Half maximal 
inhibitory concentrations (IC50s) were calculated from dose-response curves generated 
in GraphPad Prism 7 using four parameter logistic regression. Extreme outliers were 
removed from analysis to facilitate curve fitting; these outliers were most commonly 
associated with drug precipitation although some may reflect the Eagle effect. The raw 
data for this experiment are included in File S4.

Subsequent experiments determined the IC50s of the top five hit drugs as well 
as four standard-of-care drugs against 13 different C. auris strains, as well as one 
strain each of C. albicans, C. glabrata, and C. dubliniensis with 22-point dose-response 
ranges (0.05–2,600 µM for fluconazole; 0.001–133.3 µM for caspofungin, miltefosine, and 
triclabendazole; 0.001–20 µM for posaconazole, amphotericin B, chloroxine, broxyquino
line, and clioquinol) performed as described above with three biological replicates, each 
consisting of two technical replicates. After background correction, data from all three 
biologic replicates were pooled and used to generate dose-response curves in R Studio 
(version 1.2.5033). The IC50 including the 95% confidence interval was calculated using 
an N-parameter logistic regression model for each drug (library: nplr version 0.1.7). 
Ggplot2 (version 3.2.1) was used to generate forest plots of the IC50 (95% confidence 
interval) for each strain as well as the LD50 (95% confidence interval) of three human 

Research Article mBio

July/August  Volume 14  Issue 4 10.1128/mbio.01376-23 14

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

bi
o 

on
 1

6 
A

pr
il 

20
24

 b
y 

16
9.

23
0.

87
.1

13
.

https://doi.org/10.1128/mbio.01376-23


cell lines with the lower limit of the lethal dose highlighted in red. The scripts and raw 
data used in this analysis are available at www.github.com/srlevan in the “Lohse_CAu
ris_2023” repository.

Human cell toxicity measurements

The human cell lines Hep-G2 (liver), HEK-293 (kidney), and HFF-1 (fibroblast) were 
cultured in Dulbecco’s modified Eagle’s medium (Gibco) containing 10% (vol/vol) fetal 
bovine serum (Gibco), 2 mM l-glutamine, 100 U/mL penicillin/streptomycin (Gibco), and 
10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer. For toxicity 
experiments, all human cell lines were seeded into sterile, opaque 384-well culture plates 
(Corning 3570) 1 day prior to drug addition. Drugs were added using the Labcyte Echo 
525 liquid handler to generate 22-point dose-response concentration ranges. Cells were 
cultured in the presence of drug for 72 h prior to addition of CellTiter-Glo 2.0 reagent 
(Promega) and collection of luminescence values in relative luminescence units (RLU) 
using the Promega GloMax plate reader. The percent viability of each treated culture was 
calculated using the following equation: % inhibition = 100 × (test well RLU)/(untreated 
control RLU). IC50 values for each drug against human cell lines were calculated as 
described above. Toxicity experiments were performed with three biological replicates, 
each consisting of two technical replicates.

Drug susceptibility in evolved and genetically engineered C. auris strains

C. auris strains selected for clioquinol resistance or engineered for specific mutations 
were generated and cultured as described previously and the IC50 of clioquinol and 
other drugs was determined as described above using 15-point dose-response ranges 
(0.1–20 µM for clioquinol; 3.3–1,333 µM for fluconazole; 0.03–66.7 µM for broxyquino
line and amphotericin B; 0.003–13.3 µM for posaconazole, voriconazole, and micafun
gin). All strains were tested simultaneously for direct comparison of drug effects and 
three biological replicates were performed, each consisting of two technical replicates. 
Fold-changes in IC50 were calculated relative to the parental strains from which each 
mutant strain was derived.

SAR assays

A group of 32 commercially available drugs or compounds that are structurally related to 
clioquinol were selected for SAR experiments. All drugs were resuspended in DMSO 
and tested for inhibition of the three primary C. auris strains with 15-point dose-
response ranges from 0.01 to 150 µM. Experiments were performed and IC50 values 
were calculated as described above with three biological replicates, each consisting 
of two technical replicates. As with the verification screen, extreme outliers from this 
experiment were removed from analysis to facilitate curve fitting. The raw data for this 
experiment are included in File S5.

Metal supplementation experiments

Stock 10 mM metal solutions for supplementation experiments were prepared in sterile 
water as follows: Ca2+ solution from calcium chloride (Sigma C79-500); Mg2+ solution 
from magnesium sulfate (Sigma 246972); Fe2+ solution from ferrous(II) sulfate (Sigma 
F8048); Fe3+ solution from ferric(III) chloride (Sigma F-2877); Cu2+ solution from copper(II) 
sulfate (Sigma C7631); Mn2+ solution from manganese sulfate (Sigma M-1144); Zn2+ 

solution from zinc sulfate (Sigma 96500). For metal supplementation experiments, C. 
auris was grown in RPMI media depleted of divalent metal ions using Chelex 100 
resin (Biorad) following the manufacturer’s protocol. Drugs and metals were dispensed 
into culture wells using the Labcyte Echo 525 liquid handler prior to addition of 
C. auris cells. Ethylenediaminetetraacetic acid (EDTA) and N,N,N′,N′-tetrakis(2-pyridinyl
methyl)−1,2-ethanediamine (TPEN) were used as control chelating agents for compar
ison to antifungal drugs. The percent inhibition for each drug/metal condition was 
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calculated as described above. For calculation of clioquinol IC50 in the context of 
different metal concentrations, 8-point dose-responses ranges from 0.01 to 10 µM were 
used. Experiments were performed with three biological replicates, each consisting of 
two technical replicates.

Viability determination by plating

Viability assays were performed using the AR-384 strain. In brief, overnight cultures 
(3 mL, in test tubes) were started in RPMI-1640 media on a roller drum at 30°C from 
2- to 3-day-old colonies grown on YPD agar plates. The following morning, the OD600 
of the overnight cultures was determined, cultures were diluted back to OD600 = 0.7 in 
8 mL fresh RPMI-1640, and the diluted cultures were allowed to recover at 30°C for 3 h. 
After 3 h, clioquinol (5 µM) and DMSO controls were added to the cultures which were 
then incubated overnight on a roller drum at 30°C. As a positive control for cell death, 
an independent culture was pelleted and resuspended in 70% isopropanol for 1 h at 
room temperature (roughly 20 to 22°C) with vortexing every 15 min. Aliquots were taken 
from the 22-h clioquinol and DMSO treated cultures as well as 1 h isopropanol treated 
cultures, cells were PBS washed, and preliminary 10× stocks of normalized cell density 
were created based on OD600. The cell density of each sample was then determined by 
flow cytometry using a BD Accuri C6 Plus; cell counts were based on the number of cells 
detected in a 10 µL sample. 1× normalized cell density stocks were then created based 
on these measurements. The exact cell density of these 1× stocks was then determined 
by flow cytometry of 10 µL of each solution. Next, both high-density (1:20 dilution) 
and low-density (1:200 dilution) stocks were made from the 1× stock and plated (50 µL 
of high density, 60 µL of low density) on YEPD plates at 30°C. Three low-density and 
two high-density plates were used for clioquinol and DMSO samples; two low- and one 
high-density plates were used for isopropanol samples. After 2 days, colony numbers 
were determined using a Protos 3 (Synbiosis) automated colony counter. The input cell 
density (cells/µL) and detectable colonies (CFU) were both normalized to their respective 
DMSO treated samples and normalized viability (relative to the DMSO treated samples) 
was determined by dividing the normalized CFU for each sample by the normalized 
input cell density.

Iron supplementation recovery assay

Iron supplementation recovery assays were performed on the AR-384 strain and 
flow cytometry for the iron supplementation recovery assays was performed on the 
previously described BD Accuri C6 Plus. Overnight cultures (3 mL, in test tubes) were 
started in RPMI-1640 media on a roller drum at 30°C from 2- to 3-day-old colonies grown 
on YPD agar plates. The following morning, the OD600 of the overnight cultures was 
determined, cultures were diluted back to OD600 = 0.5 in fresh RPMI-1640, and the 
diluted cultures were allowed to recover at 30°C for 3 h at which point 4 µM clioquinol 
was added to the cultures. Cultures were then incubated a further 21 h on a roller drum 
at 30°C. After the 21-h incubation, two 1 mL aliquots were pulled from each clioquinol 
treated sample and either iron [2 µM each of iron (II) sulfate and iron (III) chloride] or 
water (equivalent volumes to the iron solutions) was added. Four clioquinol samples 
were processed in this way. The density of each culture was then determined by flow 
cytometry and the strains were incubated on a roller drum at 30°C for 25 h. At each 
subsequent time point, the cultures were vortexed after which samples were removed 
and diluted with D-PBS. The cell density of each sample was then determined by flow 
cytometry; cell counts were based on the number of cells detected in a 10 µL sample.

Liquid resistance assay

Two overnights of AR-384 and one of AR-390 were started from independent single 
colonies, the following morning the overnight cultures were diluted back to OD600 = 
0.05 in fresh media and allowed to recover for 3 h. At this point, clioquinol was added 
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to the cultures at 0.75 µM (AR-384) or 0.4 µM (AR-390), and the cultures were incubated 
for 2 days on a roller drum at 30°C. Samples were then diluted back to approximately 
OD600 = 0.01 in the presence of fresh media and drug. The three independent cultures 
were passaged a further 30 times in this manner with passages occurring every 3 days, 
rather than every 2 days after passage 20 (we note that samples were frozen down after 
passage 20, passage 21 was started from single colonies on plates made from these 
frozen stocks). Clioquinol concentrations were slowly increased during the course of the 
experiment in response to increased growth by strains; see File S6 for the clioquinol 
concentration present for each passage. In parallel to this experiment, 18 passages were 
made of two independent control cultures for each strain where equivalent volumes of 
DMSO were added at each passage.

RT-qPCR methods

Three independent overnight cultures for each strain were started from independent 
single colonies on roller drum at 30°C, the following morning the overnight cultures were 
diluted back to OD600 = 0.35 in 5 mL fresh media and allowed to recover for 6 h. We note 
that clioquinol was not present in the overnight or recovery cultures and as such these 
samples reflect the basal, as opposed to clioquinol-induced, expression levels. Cultures 
were then spun down, decanted, and the pellets flash frozen with liquid nitrogen before 
storage at −80°C. Pellets were thawed and RNA was extracted using the MasterPure 
Yeast RNA Purification Kit (Lucigen MPY03100) followed by DNase treatment with the 
DNase TURBO DNA-free kit (Invitrogen AM1907). RNA was diluted 1:50 for RT-qPCR which 
was conducted using the Luna Universal One-Step RT-qPCR kit (New England Biolabs 
E3005E) on a C1000 touch thermal Cycler/CFX384 Real-Time System (Biorad). Reactions 
were performed in Hard-Shell PCR Plates (384 well, thin-wall, Biorad HSP3805) sealed 
with Microseal B Adhesive Sealers (Biorad MSB-1001). Two independent oligonucleotide 
sets each were used for CDR1, CDR2, and MDR1; one of the CDR1 oligonucleotide sets 
was located downstream of the E772* mutation. One oligonucleotide set each was used 
for the control genes UBC4 and ACT1. Two technical replicates were performed for each 
oligonucleotide set for each biological replicate. The Cq values for the two technical 
replicates were averaged for each set, after which the averaged Cq values for the UBC4 
and ACT1 sets for each biological replicate were then averaged. The ΔCt was then 
determined for each primer set versus the averaged UBC4/ACT1 Cq, after which the ΔΔCt 
was calculated versus the parental strain, and the fold change was determined by taking 
2^(−ΔΔCt). The average was then calculated for the two probe sets for each gene within 
each biological replicate, after which the average and standard deviation were calculated 
for each gene across the three biological replicates.

DNA sequencing

For endpoint samples of the evolved strains, two cultures were inoculated from 
independent single colonies (single colony samples) and a third culture was started 
from the dense portion of the streak on the plate (population samples). For samples 
from intermediate time points for the evolved strains, single cultures were started from 
the dense portion of the streak on the plate (population samples). A single culture 
was inoculated from an independent colony for the parental strains. One culture was 
inoculated from an independent colony (single colony samples) and a second culture 
was started from the dense portion of the streak on the plate (population samples) for 
the DMSO control cultures. Cultures for whole genome DNA sequencing were grown 
in 8 mL media overnight on a roller drum at 30°C. Prior to harvesting the following 
morning, a sample was pulled to freeze as a glycerol stock for future use. 6.2 mL of each 
culture was spun down, decanted, flash frozen in liquid nitrogen, and stored at −80°C.

DNA was extracted using the Quick-DNA Fungal/Bacterial Miniprep Kit (Zymo 
Research D6005) with two 5-min cycles on a TissueLyser II (Qiagen) separated by a 5-min 
incubation on ice; final elution was in 60 µL water and concentrations were determined 
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on a Nanodrop 2000c (Thermo Scientific). The DNA was diluted to 100 µL at a concentra
tion of 10 ng/µL and then sheared using a Biorupter Pico (Diagenode) with 13 cycles of 
30 s on followed by 30 s off and quantified using an Agilent D1000 ScreenTape (Agilent 
Technologies); DNA fragment size after this step averaged 240 bp.

Library preparation was performed using the NEBNext Ultra DNA Library Prep Kit for 
Illumina (E7370), using the 200 bp recommended bead volumes for step 3, 5 PCR cycles 
for step 4, and eluting in water for step 5. See File S6 for a list of the i7_index_RC and 
i5_index_RC oligonucleotides used for each sample. Eluted libraries for sequencing were 
then quantified via Qubit, pooled, the pooled mixture quantified via Qubit, and then 
the pooled libraries were quantified using an Agilent High Sensitivity D1000 ScreenTape 
(Agilent Technologies); DNA fragment size after this step averaged 360 bp.

Sequencing was performed by the Chan Zuckerberg Biohub Genomics Platform on 
an Illumina NextSeq 550 using a NextSeq 500/550 v2.5 reagent kit (300 cycles, 150 bp 
paired end read, 12 bp index length for reads 1 and 2). The number of reads per sample 
varied between 8,621,624 and 18,340,887 (File S6). Sequences were aligned to the 
reference genomes using Bowtie2 (v 2.4.4) with default settings, the overall alignment 
rate varied between 89.38% and 94.57% (File S6), for an approximate sequencing depth 
ranging from 95× to 200× with an average of 150×. AR-390 based strains were aligned 
to B8441 chromosome FASTA and GFF features files from the Candida Genome Database 
(version s01-m01-r-17, dating from 8 August 2021, downloaded on 10 September 2021). 
AR-384 based strains were aligned to B11221 chromosome FASTA and GFF features 
files from the Candida Genome Database (no version information, dating from 17 
December 2019, downloaded on 10 September 2021). Aligned reads were then filtered 
using Samtools (version 1.13) to remove reads with a Cigar Value of “*.” Mutations in 
genes were identified using Minority Report (version 1.0, available at https://github.com/
JeremyHorst/MinorityReport) (102) in Python 2 (version 2.7.15) with the parental AR-384 
and AR-390 sequencing reads used as the basis for comparison, the analyze “Copy 
Number Variants” (CNV) feature was enabled, and the codon table changed to reflect 
the use of “CTG” as serine rather than leucine. For single colony samples, the default 
settings were used; these settings identified mutations that were present in at least 
90% of the population. For population samples, CNV analysis was conducted and the 
following settings were used:
“vp” (minimum_variant_proportion) of 0.1, “wp” (maximum_variant_proportion) of 0.04, 
“vc” (minimum_variant_counts) of 10, and “wc” (maximum_wildtype_variant_counts) of 
50. In other words, a mutation or variant must be present in at least 10% of experimental 
sample reads with a minimum requirement for 10 reads and must be present in no more 
than 4% of parental sequencing reads with a maximum limit of 50 reads. The Minority 
Report output files for each sample can be found in File S6. As a parallel approach, 
variant sequences were identified from the alignment sam files which were filtered for 
map quality using Samtools (version 1.13) and BCFtools (version 3.6.3) (103) with the 
output organized from the VCF files using R (104) with extensive use of tidyverse (105). 
The position of each variant was determined to be within a gene (or in an intergenic 
region) based on coordinates from GFF files, considering “gene” features, which include 
introns. The results of this analysis are also included in File S6 and the scripts used 
to perform this analysis are available at www.github.com/srlevan in the “Lohse_CAu
ris_2023” repository. Additional details explaining the Minority Report and alternative 
R-based mutation identification outputs are provided in File S7.
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