
1 
 

Upper airway gene expression differentiates COVID-19 from other acute 
respiratory illnesses and reveals suppression of innate immune responses 
by SARS-CoV-2 
Eran Mick1,2,3,*, Jack Kamm3,*, Angela Oliveira Pisco3, Kalani Ratnasiri3,  Jennifer M. Babik1, 
Carolyn S. Calfee2, Gloria Castañeda3, Joseph L. DeRisi3,4, Angela M. Detweiler3,           
Samantha Hao3, Kirsten N. Kangelaris5, G. Renuka Kumar3, Lucy M. Li3, Sabrina A. Mann3,4, 
Norma Neff3, Priya A. Prasad5, Paula Hayakawa Serpa1,3, Sachin J. Shah5,                             
Natasha Spottiswoode5, Michelle Tan3, Stephanie A. Christenson2, Amy Kistler3,*,                 
Charles Langelier1,3,*,ǂ 
* Equal contribution 
1 Division of Infectious Diseases, University of California, San Francisco, CA, USA 
2 Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, CA, USA 
3 Chan Zuckerberg Biohub, San Francisco, CA, USA 
4 Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA 
5 Division of Hospital Medicine, University of California, San Francisco, CA, USA 

Abstract 

 We studied the host transcriptional response to SARS-CoV-2 by performing 

metagenomic sequencing of upper airway samples in 238 patients with COVID-19, other 

viral or non-viral acute respiratory illnesses (ARIs). Compared to other viral ARIs, COVID-

19 was characterized by a diminished innate immune response, with reduced expression 

of genes involved in toll-like receptor and interleukin signaling, chemokine binding, 

neutrophil degranulation and interactions with lymphoid cells. Patients with COVID-19 

also exhibited significantly reduced proportions of neutrophils and macrophages, and 

increased proportions of goblet, dendritic and B-cells, compared to other viral ARIs. Using 

machine learning, we built 26-, 10- and 3-gene classifiers that differentiated COVID-19 

from other acute respiratory illnesses with AUCs of 0.980, 0.950 and 0.871, respectively. 

Classifier performance was stable at low viral loads, suggesting utility in settings where 

direct detection of viral nucleic acid may be unsuccessful. Taken together, our results 

illuminate unique aspects of the host transcriptional response to SARS-CoV-2 in 

comparison to other respiratory viruses and demonstrate the feasibility of COVID-19 

diagnostics based on patient gene expression. 
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Introduction 

  The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 

December 2019 has precipitated a global pandemic with over 4.5 million cases and 300,000 

deaths1. Coronavirus disease 2019 (COVID-19), the clinical syndrome caused by SARS-CoV-2, 

varies from asymptomatic infection to critical illness, with dysregulated inflammatory response to 

infection a hallmark of severe cases2.  Defining the host response to SARS-CoV-2, as compared 

to other respiratory viruses, is fundamental to identifying mechanisms of pathogenicity and 

potential therapeutic targets.    

   Metagenomic next generation RNA sequencing (mNGS) is a powerful tool for assessing 

host/pathogen dynamics3,4 and a promising modality for developing novel respiratory diagnostics 

that integrate host transcriptional signatures of infection3,5. While proven for diagnosis of other 

acute respiratory infections3,5, transcriptional profiling has not yet been evaluated as a diagnostic 

tool for COVID-19, despite its potential to mitigate the risk of false negatives associated with 

standard naso/oropharyngeal (NP/OP) swab-based PCR testing6–8. 

Results and Discussion 

  To interrogate the molecular pathogenesis of SARS-CoV-2 and evaluate the feasibility of 

a COVID-19 diagnostic based on host gene expression, we conducted a multicenter observational 

study of 238 patients with acute respiratory illnesses (ARIs) who were tested for SARS-CoV-2 by 

NP/OP swab PCR, and performed host/viral mNGS on the same specimens. The cohort (Table 

S1) included 94 patients who tested positive for SARS-CoV-2 by PCR, 41 who tested negative 

but had other pathogenic respiratory viruses detected by mNGS (Methods, Figure S1A), and 

103 with no virus detected (non-viral ARIs). 

  We began by performing pairwise differential expression analyses between the three 

patient groups (Methods, Supp. File 1). Hierarchical clustering of the union of the 50 most 

significant genes in each of the comparisons revealed that the transcriptional response to SARS-
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CoV-2 was distinct from the response to other viruses (Figure 1A). We detected gene clusters 

that were up- (cluster I) or down-regulated (cluster II) by other viruses as compared to non-viral 

ARIs, but relatively unaffected by SARS-CoV-2. Importantly, we also identified a small number of 

genes that were upregulated by SARS-CoV-2 more than by other viruses (cluster III). And many 

genes upregulated in all viral ARIs (cluster IV) appeared to respond to SARS-CoV-2 proportionally 

to viral load, as measured by the relative abundance of sequencing reads mapped to the virus 

(Methods, Figure S1B). 

  To investigate the pathways driving these distinctions, we performed gene set enrichment 

analyses9 (GSEA) on the genes differentially expressed (DE) between SARS-CoV-2 and non-

viral ARIs, and separately, those DE between other viral ARIs and non-viral ARIs (Methods, 

Supp. File 2). We found that both SARS-CoV-2 and other viruses elicited an interferon response 

in the upper airway (Figure 1B). The most significant genes upregulated by SARS-CoV-2 were 

interferon inducible, including IFI6, IFI44L, IFI27 and OAS2 (Figure S2A), in agreement with 

previous reports10,11. IFI27 was induced by SARS-CoV-2 significantly more than by other viruses, 

even at low viral load. Most other top DE genes, however, did not distinguish COVID-19 from 

other viral ARIs. ACE2, which encodes the cellular receptor for SARS-CoV-2, was also non-

specifically induced, consistent with its recent identification as a general interferon stimulated 

gene12. 

  Notably, GSEA of DE genes in the direct comparison of SARS-CoV-2 and other viruses 

suggested elements of the interferon response to SARS-CoV-2 were attenuated (Figure S2B, 

Supp. File 2). Indeed, numerous interferon response genes, such as IRF7 and OASL, were more 

potently induced by other viruses, and high SARS-CoV-2 abundance was required to achieve 

comparable induction (Figure S2C). These results may be related to observations of a blunted 

interferon response in cellular models of SARS-CoV-2 infection13, though the effects in patients 

appear more nuanced. 
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  A striking contrast between SARS-CoV-2 and other viruses emerged in the activation of 

additional innate immune signaling pathways (Figure 1B, S2B). Other viral ARIs caused 

significant upregulation of gene expression associated with toll-like receptors, interleukin 

signaling, chemokine binding, neutrophil degranulation and interactions with lymphoid cells, yet 

the response of these pathways to SARS-CoV-2 was markedly attenuated (Figure 1B, S2B). 

While other viral ARIs appeared to depress expression of genes involved in cilia functions and 

antioxidant responses, this was not observed for SARS-CoV-2 (Figure 1B, S2B).  

   In silico estimation of cell type proportions revealed significant differences between the 

groups (Figure 1C, S3). Compared to patients with other viral and non-viral ARIs, those infected 

with SARS-CoV-2 exhibited significantly reduced fractions of monocytes/macrophages and 

neutrophils, and significantly increased proportions of goblet, dendritic and B-cells. Patients with 

other viral ARIs exhibited decreased ciliated cell and ionocyte fractions, and increased 

macrophage, neutrophil and T-cell fractions, compared to those with non-viral ARIs. These results 

closely aligned with the GSEA findings and suggested that the diminished innate immune 

responses in COVID-19 patients were coupled to differences in the cellular composition of the 

airway microenvironment. 

 The gene that was most decreased in expression in COVID-19 patients compared to those 

with other viral ARIs was IL1B, which encodes a pro-inflammatory cytokine produced by the 

inflammasome complex, particularly in macrophages14 (Figure 1D, Supp. File 1). Among the top 

100 differentially decreased genes were those involved in inflammasome activation and activity 

(NLRP3, CASP5, IL1A, IL1B, IL18RAP, IL1R2) and in chemokine signaling for recruiting innate 

immune cells to the epithelium (CCL2, CCL3, CCL4). Given that IL1-β and other pro-inflammatory 

cytokines are primary targets of monoclonal antibody therapeutics under investigation15, these 

results raise the question of whether further suppression early in the course of disease may be 

detrimental in the setting of an already suppressed inflammatory response to SARS-CoV-2.  
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  Relatively few genes were specifically upregulated in COVID-19 patients compared to 

both other viral and non-viral ARIs. These included TRO, which encodes a membrane-bound cell 

adhesion molecule; WDR74, which plays a role in rRNA processing and associates with the RNA 

helicase MTR416; EIF4A2, a translation initiation factor that has been shown to interact with other 

coronaviruses as well as HIV17,18; and FAM83A, which is involved in epidermal growth factor 

receptor (EGFR) signaling19. 

  We next asked whether host gene expression data could be used to construct a classifier 

capable of accurately differentiating COVID-19 from other ARIs (viral or non-viral). By employing 

a combination of lasso regularized regression and random forest (Methods), we first identified a 

26-gene signature that performed with an area under the receiver operating characteristic curve 

(AUC) of 0.980 (range of 0.951-1.000), as estimated by 5-fold cross validation (Figure 2A, Tables 

S2, S3). Even though many patients undergoing testing for COVID-19 may not be infected with 

other respiratory viruses, we recognized the need for classifier specificity in this circumstance and 

examined how well the classifier performed at distinguishing SARS-CoV-2 from other respiratory 

viruses. We found that it achieved an AUC of 0.966 (range 0.895-1.000) when tested only on 

patients with other viral ARIs, indicating robust specificity for SARS-CoV-2 (Tables S2, S3). Using 

a cut-off of 40% predicted out-of-fold probability for COVID-19 to call a patient positive, this 

translated into a sensitivity of 97% and a specificity of 96% for patients with non-viral ARIs and 

83% for patients with other viral ARIs (Figure 2B).   

  Given that a parsimonious gene set could enable practical incorporation into a clinical 

PCR assay, we implemented a more restrictive regression penalty and identified a 10-gene 

classifier that could differentiate SARS-CoV-2 from other respiratory illnesses with an AUC of 

0.950 (range 0.918-0.974) (Figure 2C, Tables S2, S3). Classification performance specifically 

against other viral ARIs suffered slightly but still achieved an AUC of 0.905 (range 0.842-0.959). 

Existing SARS-CoV-2 PCR assays typically employ 3 gene targets and thus we tested the 
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potential to further reduce host classifier gene size. We found that a sparse 3-gene (IL1B, IFI6, 

IL1R2) classifier still achieved an AUC of 0.871 (range 0.808-0.911) (Figure 2D, Tables S2, S3).   

  A host-based diagnostic might have particular utility if it could increase the sensitivity of 

standard NP/OP swab PCR testing, which may return falsely negative in a significant proportion 

of patients6–8. Presumably, false negatives are in large part due to insufficient viral abundance in 

the collected specimen. While our cohort did not include PCR-negative samples from patients 

with clinically confirmed COVID-19, we evaluated whether classifier performance was affected by 

viral load. The predicted probability of SARS-CoV-2 infection had little apparent relationship to 

the abundance of SARS-CoV-2, suggesting host gene expression has the potential to provide an 

orthogonal indication of COVID-19 status even when viral abundance is low (Figure 2E).  

  In summary, we studied 238 patients with acute respiratory illnesses to define the human 

upper respiratory tract gene expression signature of COVID-19. Our study is limited by sample 

size, incomplete demographic data and the need for an independent validation cohort.   

Notwithstanding, our results illuminate unique aspects of the host transcriptional response to 

SARS-CoV-2 in comparison to other respiratory viruses and provide insight regarding molecular 

pathogenesis. We also leveraged these data to develop an accurate, clinically practical, COVID-

19 diagnostic classifier that may help overcome the limitations of direct detection of viral nucleic 

acid. Future prospective studies in a larger cohort will be needed to validate these findings, 

determine the prognostic value of host signatures, and assess the performance of integrated 

host/viral diagnostic assays. 
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Materials and Methods 

Study design, clinical cohort and ethics statement 

We conducted an observational cohort study of patients with acute respiratory illnesses 

suspected to be COVID-19 at the University of California, San Francisco (UCSF) and Zuckerberg 

San Francisco General Hospital between 03/10/2020 and 04/07/2020. Through UCSF IRB 

protocol 17-24056, a waiver of consent was granted to evaluate unused clinical specimens in the 

UCSF Clinical Microbiology Laboratory and assess demographics and basic clinical features from 

the Epic-based electronic health record.   

 

SARS-CoV-2 detection by clinical PCR 

 Testing for COVID-19 was carried out in the UCSF Clinical Microbiology Laboratory using 

polymerase chain reaction (PCR) of NP swab or pooled NP + OP swab specimens using primers 

targeting either two regions of the SARS-CoV-2 N gene (n=156, 66%), or the E and RNA-

dependent RNA polymerase genes (n=82, 34%), plus human RNAse P as a positive control. In 

all our analyses, we defined patients with COVID-19 as those with a positive SARS-CoV-2 result 

by PCR. 

 

Metagenomic sequencing 

To evaluate host gene expression and detect the presence of other viruses, metagenomic 

next generation sequencing (mNGS) of RNA was performed on the same specimens subjected 

to SARS-CoV-2 PCR testing. Following DNase treatment, human cytosolic and mitochondrial 

ribosomal RNA was depleted using FastSelect (Qiagen). To control for background 

contamination, we included negative controls (water and HeLa cell RNA) as well as positive 

controls (spike-in RNA standards from the External RNA Controls Consortium (ERCC))1. RNA 

was then fragmented and subjected to a modified metagenomic spiked sequencing primer 

enrichment (MSSPE) library preparation method2. Briefly, a 1:1 mixture of the NEBNext Ultra II 
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RNAseq Library Prep (New England Biolabs) random primers and a pool of SARS-CoV-2 primers 

at 100 µM was used at the first strand synthesis step of the standard RNAseq library preparation 

protocol to enrich for reads spanning the length of the SARS-CoV-2 genome. RNA-seq libraries 

underwent 146 nucleotide paired-end Illumina sequencing on an Illumina Novaseq 6000 

instrument.  

 

Quantification of SARS-CoV-2 abundance by mNGS 

 All samples were processed through a SARS-CoV-2 reference-based assembly pipeline 

that involved removing non-SARS-CoV-2 reads with Kraken23, and aligning to the SARS-CoV-2 

reference genome MN908947.3 using minimap24. We calculated SARS-CoV-2 reads-per-million 

(rpM) using the number of reads that aligned with mapq >= 20. For plotting purposes, 0.1 was 

added to the rpM values to avoid taking the log of 0.  

 

Detection of other respiratory pathogenic viruses by mNGS 

All samples were processed through the IDSeq pipeline5,6, which performs reference 

based alignment at both the nucleotide and amino acid level against sequences in the National 

Center for Biotechnology Information (NCBI) nucleotide (NT) and non-redundant (NR) databases, 

followed by assembly of the reads matching each taxon detected. We further processed the 

results for viruses with established pathogenicity in the respiratory tract3. We evaluated whether 

one of these viruses was present in a patient sample if it met the following three initial criteria: i) 

at least 10 counts mapped to NT sequences, ii) at least 1 count mapped to NR sequences, iii) 

average assembly nucleotide alignment length of at least 70bp.  

Negative control (water and HeLa cell RNA) samples enabled estimation of the number of 

background reads expected for each virus, which were normalized by input mass as determined 

by the ratio of sample reads to spike-in positive control ERCC RNA standards7. Viruses were then 

additionally tested for whether the number of sequencing reads aligned to them in the NT 
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database was significantly greater compared to negative controls. This was done by modeling the 

number of background reads as a negative binomial distribution, with mean and dispersion fitted 

on the negative controls. For each batch (sequencing run) and taxon (virus), we estimated the 

mean parameter of the negative binomial by averaging the read counts across all negative 

controls after normalizing by ERCCs, slightly regularizing this estimate by including the global 

average (across all batches) as an additional sample. We estimated a single dispersion parameter 

across all taxa and batches, using the functions glm.nb() and theta.md() from the R package 

MASS8. We considered a patient to have a respiratory pathogenic virus detected by mNGS if the 

virus achieved an adjusted p-value < 0.05 after Holm-Bonferroni correction for all tests performed 

in the same sample. 

 

Host differential expression (DE) analysis  

 Following demultiplexing, sequencing reads were pseudo-aligned with kallisto9 (v. 0.46.1; 

including bias correction) to an index consisting of all transcripts associated with human protein 

coding genes (ENSEMBL v. 99), cytosolic and mitochondrial ribosomal RNA sequences, and the 

sequences of ERCC RNA standards. Samples retained in the dataset had a total of at least 

400,000 estimated counts associated with transcripts of protein coding genes, and the average 

across all samples was 5.79 million. Gene-level counts were generated from the transcript-level 

abundance estimates using the R package tximport10, with the lengthScaledTPM method. 

 Genes were retained for differential expression analysis if they had at least 10 counts in 

at least 20% of samples (n=15,900). The analysis was performed with the R package limma11 

using quantile normalization and the design: ~0 + viral status + gender + age + sequencing batch,    

where viral status was either “SARS-CoV-2”, “other virus” or “no virus”. We note that the gender 

of patients for whom we lacked this information was inferred based on chromosome Y gene 

expression, and the age of patients for whom we lacked this information was taken as the mean 

age of samples with age reported in the respective viral status group. 
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 To generate the gene expression heatmap, hierarchical clustering was performed on the 

union of the top 50 genes (by p-value) in each of the pairwise comparisons among the three 

groups (n=120 genes). Gene counts were subjected to the variance stabilizing transformation, as 

implemented in the R package DESeq212, centered and scaled prior to clustering. For both rows 

and columns, Euclidean distance was the distance measure and Ward’s criterion (ward.D2) was 

the agglomeration method.  

 

Gene set enrichment analysis  

 Gene set enrichment analyses13 were performed using the fgseaMultilevel function in the 

R package fgsea14 on REACTOME15 pathways with a minimum size of 10 genes and a maximum 

size of 1,000. The genes included in each pairwise comparison were those with Benjamini-

Hochberg adjusted p-value < 0.1 and |log2(FC)| > log(1.5) in the respective DE analysis, pre-

ranked by fold change.  

 The gene sets shown in Figure 1B were manually selected to reduce redundancy and 

highlight diverse biological functions from among those with a Benjamini-Hochberg adjusted           

p-value < 0.05 in at least one of the comparisons i) SARS-CoV-2 vs. no virus, and ii) other virus 

vs. no virus. And the gene sets shown in Figure S2B were similarly selected from among those 

with an adjusted p-value < 0.05 in the direct comparison of SARS-CoV-2 vs. other virus. Full 

results of all analyses are provided as supplementary.   

 

Regression of gene counts against viral abundance 

 We performed robust regression of the limma-generated quantile normalized gene counts 

against log10(rpM) of SARS-CoV-2 for all genes with a Benjamini-Hochberg adjusted                         

p-value < 0.001 in either the DE analysis of SARS-CoV-2 vs. no virus, or SARS-CoV-2 vs. other 

virus (n=2,920). The samples included were those in the SARS-CoV-2 patient group with             

rpM >= 1. Robust regression was used to better account for outlier data points. 
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 The analysis was performed using the R package robustbase16, which implements MM-

type estimators for linear regression17,18, using the KS2014 setting and the model:                                             

quantile normalized counts (log2 scale) ~ gender + age + sequencing batch + log10(rpM).          

Model predictions for the log10(rpM) co-variate were used for display in the individual gene plots. 

Reported p-values for significance of the difference of the regression coefficient from 0 were 

Benjamini-Hochberg adjusted, and reported R2 values represent the adjusted robust coefficient 

of determination19.  

 

In silico analysis of cell type fractions 

 Cell-type fractions were estimated from bulk host transcriptome data using the 

CIBERSORT X algorithm20. We used the human lung cell atlas dataset21 to derive the single cell 

signatures. The cell types estimated with this reference cover all expected cell types in the airway 

samples. The estimated fractions were compared between the three patient groups using a two-

sided Mann-Whitney-Wilcoxon test with Bonferroni correction. 

 

Classifier construction 

 We built sparse classifiers for COVID-19 status using a combined lasso and random forest 

approach. For feature selection, we used the logistic lasso (as implemented in the R package 

glmnet22), and then trained random forests on the selected features (using the R package 

randomForest23). We used 5-fold cross-validation to evaluate model error. For each train-test split, 

we used a nested cross-validation within the training set to select the lasso tuning parameter. For 

the random forest, we used 10,000 trees, and left all tuning parameters at their defaults. For the 

initial input features (before selection), we used gene counts with a variance-stabilizing transform 

derived from the training set only (using the R package DESeq212). Classifiers were built using a 

gold standard of COVID-19 diagnosis based on SARS-CoV-2 PCR positivity. 
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Data availability 

 Gene counts, sample metadata, and code to generate viral calls by mNGS, perform DE, 

regression and cell type analyses, and construct the gene expression classifiers are available at: 

https://github.com/czbiohub/covid19-transcriptomics-pathogenesis-diagnostics-results 
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Supplementary Tables 

Table S1.  Cohort Clinical and Demographic Characteristics. 

 

  Cohort 
Overall 

COVID-19 Other Viral 
ARI 

Non-Viral 
ARI 

Total Enrolled 238 94 41 103 
*Age, years (mean, range) 51 (19 - 85+) 46 51 55 
Female gender 119 50% 48 19 52 
Clinical Encounter Type n % n n n 
Inpatient 68 29% 8 15 45 
Intensive Care Unit 20 8% 4 6 10 
Emergency Department 46 19% 5 14 27 
Outpatient 89 37% 53 12 24 
Unknown 35 15% 28 0 7 
Race n % n n n 
White or Caucasian 95 40% 20 27 48 
Asian 45 19% 13 10 22 
Black or African American 20 8% 3 1 16 
Native Hawaiian or Other 1 0% 1 0 0 
Other 39 16% 27 3 9 
Unknown 38 16% 30 0 8 
Ethnicity n % n n n 
Not Hispanic or Latino 163 68% 41 39 83 
Hispanic or Latino 33 14% 19 1 11 
Unknown 41 17% 31 1 9 
Sample Type n % n n n 
NP Swab 115 48% 46 24 45 
Pooled NP+OP Swab 87 37% 19 17 51 
Unknown 36 15% 29 0 7 
Legend: ARI = Acute Respiratory Infections. NP = nasopharyngeal. OP = oropharyngeal. 
*available for 221 subjects (93%)  
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Table S2.  

A. Performance of classifier models.  

Model 
COVID-19 vs. 
All Other ARI 

COVID-19 vs. 
Non-viral ARI 

COVID-19 vs. 
Other Viral ARI 

26-gene 0.980 (0.951-1.000) 0.985 (0.947-1.000) 0.966 (0.895-1.000) 

+age/gender 0.970 (0.936-0.991) 0.974 (0.932-1.000) 0.959 (0.914-0.994) 

10-gene 0.950 (0.918-0.974) 0.968 (0.945-0.997) 0.905 (0.842-0.959) 

3-gene 0.871 (0.808-0.911) 0.930 (0.893-0.969) 0.722 (0.539-0.842) 

 

B. Accuracy, sensitivity, and specificity of sparse classifier models at different cutoff thresholds, 

based on out-of-fold predicted probabilities. 

 
Model Threshold Accuracy Sensitivity Specificity 

26-gene 0.5 0.924 0.894 0.944 
10-gene 0.5 0.882 0.851 0.903 
3-gene 0.5 0.836 0.766 0.882 

26-gene 0.4 0.941 0.968 0.924 
10-gene 0.4 0.878 0.883 0.875 
3-gene 0.4 0.832 0.809 0.847 
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Table S3. Lasso-selected features and coefficients of classifier models.  

 

 

 

26-gene model 
(Intercept) -2.867 

CRLF1 -0.157 
TRO 0.236 

PCSK5 0.01 
TIMP1 -0.265 
ICAM4 -0.165 

IFI6 0.74 
LGR6 0.003 

WDR74 0.214 
TNS3 -0.072 
IFI44L 0.042 
PLK4 0.002 

FAM83A 0.064 
ADM -0.139 

PPEF2 0.007 
DGKI 0.046 

SCGB3A1 -0.038 
KLF15 -0.036 
KRT13 -0.096 
RGPD2 -0.168 

DCUN1D3 -0.156 
MUC19 0.043 
EIF3CL -0.025 
HBA1 -0.035 
IGLL5 0.086 

AL928654.3 -0.088 
SPECC1L-
ADORA2A -0.073 

10-gene model 
(Intercept) -4.749 

PCSK5 0.033 
IL1R2 -0.057 
IL1B -0.048 
IFI6 0.458 

WDR74 0.116 
FAM83A 0.016 

ADM -0.079 
IFI27 0.079 

KRT13 -0.009 
DCUN1D3 -0.047 

 
 

3-gene model 
(Intercept) -2.917 

IL1R2 -0.038 
IL1B -0.056 
IFI6 0.388 
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Supplementary Files 

Supplementary File 1. Differential expression analyses. 

Supplementary File 2. Gene set enrichment analyses. 

Supplementary File 3. Cell type fractions. 

Figure Legends 

Figure 1.  Host Transcriptional Signatures of SARS-CoV-2 Infection as Compared to Other 
Respiratory Viruses.  
A. Hierarchical clustering of 120 genes comprising the union of the top 50 DE genes by 

significance in each of the pairwise comparisons between patients with COVID-19 (SARS-CoV-

2), other viral ARIs and non-viral ARIs. Group labels and viral load of SARS-CoV-2 are shown in 

the annotation bars. rpM, reads-per-million. B. Normalized enrichment scores of selected 

REACTOME pathways that achieved statistical significance (Benjamini-Hochberg adjusted p-

value < 0.05) in at least one of the gene set enrichment analyses, using either DE genes between 

SARS-CoV-2 and non-viral ARIs or between other viruses and non-viral ARIs. If a pathway could 

not be tested in one of the comparisons since it had less than 10 members in the input gene set, 

the enrichment score was set to 0. C. In silico estimation of cell type fractions in the bulk RNA-

seq using lung single cell signatures. Black lines denote the median. The y-axis in each panel 

was trimmed at the maximum value among the three patient groups of 1.5*IQR above the third 

quartile. All pairwise comparisons were performed with a two-sided Mann-Whitney-Wilcoxon test 

followed by Bonferroni’s correction. D. Scatter plots of normalized gene counts (log2 scale) as a 

function of SARS-CoV-2 viral load, log10(rpM). Robust regression was performed on SARS-CoV-

2 positive patients with log10(rpM) > 0 to highlight the relationship to viral load. Shown are 

inflammasome-related genes selected from among the genes most depressed in expression in 

SARS-CoV-2 compared to other viral ARIs. Statistical results for each gene refer to (from top to 

bottom): the regression analysis, the DE analysis between SARS-CoV-2 and non-viral ARIs, and 

the DE analysis between SARS-CoV-2 and other viral ARIs. 

 
Figure 2.  Performance of COVID-19 Diagnostic Classifiers Based on Patient Gene 
Expression.  
A. Receiver operating characteristic (ROC) curve for a 26-gene classifier that differentiates 

COVID-19 from other acute respiratory illnesses (viral and non-viral). B. Accuracy of the 26-gene 

classifier within each patient group, using a cut-off of 40% out-of-fold predicted probability for 
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COVID-19. C. ROC curve for a 10-gene classifier. D. ROC curve for a 3-gene classifier. E. Out-

of-fold predicted probability of COVID-19 derived from the 26-gene classifier plotted as a function 

of SARS-CoV-2 viral load, log10(rpM). Dashed lines indicate 40% (our chosen cut-off) and 50%. 

 

Supp. Figure 1. A. Breakdown of subjects with other pathogenic respiratory viruses identified by 

mNGS. Three patients had viral/viral co-infections: SARS-CoV-2/HRV (n=1) and RSV/HRV (n=2). 

CoV=Coronavirus, HRV=Human Rhinovirus, Flu=Influenza Virus, HMPV=Human 

Metapneumovirus,  RSV=Respiratory Syncytial Virus, PIV=Parainfluenza Virus. B. Correlation of 

SARS-CoV-2 PCR Crossing Threshold (Ct) and mNGS reads-per-million (rpM). Ct represents an 

average across the SARS-CoV-2 genomic loci assessed. 

 

Supp. Figure 2. A. Gene expression scatter plots for the most significant interferon response 

genes induced by SARS-CoV-2, and the SARS-CoV-2 receptor gene ACE2. B. Gene set 

enrichment analysis for the direct comparison between COVID-19 and other viral ARIs. C. Gene 

expression scatter plots for selected interferon response genes in the leading edge of the 

interferon signaling gene set, showing lagging expression in SARS-CoV-2 compared to other viral 

ARIs.  

 

Supp. Figure 3. In silico estimation of cell type fractions in the bulk RNA-seq using lung single 

cell signatures. Black lines denote the median. The y-axis in each panel was trimmed at the 

maximum value among the three patient groups of 1.5*IQR above the third quartile. All pairwise 

comparisons were performed with a two-sided Mann-Whitney-Wilcoxon test followed by 

Bonferroni’s correction.  
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