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Chapter 2 .  ArrayOligoSelector (AOS) 

ABSTRACT 
 

The complete genome sequence of an increasing number of organisms is 

becoming available. To exploit these new resources for the purpose of developing whole 

genome microarrays, we developed a program, ArrayOligoSelector (AOS), to 

systematically design gene-specific long oligonucleotide probes for entire genomes.  For 

each open reading frame, the program optimizes the oligonucleotide selection based upon 

several parameters, including uniqueness in the genome, sequence complexity, probe 

secondary structure, GC content, and proximity to the 3' end of the gene.   

Using AOS, we designed a long oligonucleotide microarray for the complete 

genome of Plasmodium falciparum, the most deadly causative agent of human malaria. 

This malaria chip has been used to study the transcriptome of the parasitic 

intraerythrocytic developmental cycle and sequence variation between different P. 

falciparum strains. 

AOS is an open source program and is freely available for public use at 

http://arrayoligosel.sourceforge.net.  AOS has also been used by scientists all over the 

world to design whole genome microarrays for many other organisms such as S. 

cerevisiae, M. musculus and H. sapiens. 

 The first section of this chapter presents the AOS design algorithm.  The second 

section is the documentation for the program. 
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Part I.   AOS Algorithms 

 

Background 

Two important technological advances have been instrumental in transforming 

biological research from the study of a handful of genes at a time to the age of genomics.  

The first is whole genome shotgun sequencing and assembly that allows complete 

genome sequences be obtained much cheaper and faster.  As a result, the number of fully 

sequenced genomes, strains or individuals has increased dramatically.  The second 

advancement is DNA microarray, a powerful technology that allows simultaneous 

measurements of gene expression for every gene in a whole genome, which has been 

used to gain important insights into processes such as development, responses to 

environmental perturbations, gene mutation, and host response to pathogens, and cancer 

[1-5]. 

To efficiently transfer genome sequence resources to functional genomics using 

microarrays, a new kind of reagent - whole genome microarrays – is needed. The 

traditional method for constructing a whole genome array was to generate PCR products 

for every gene in the genome, a laborious and time-consuming process with various rates 

of success.  This became extremely challenging for genomes with very high AT content 

such as that of P. falciparum (80% AT).  In addition, PCR probes have difficulty 

distinguishing genes with a high degree of sequence similarity.  Oligonucleotide probe 

based platforms provide an alternative that overcomes these disadvantages [6,7].  The use 

of synthetic oligonucleotide probes eliminates the need for PCR.  By carefully selecting 

probes from the unique regions, this platform provides a means to readily distinguish 
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between genes that have a high degree of sequence similarity and avoid other problematic 

regions such as the various types of repetitive sequences or secondary structures.   

Several competing platforms for producing oligonucleotide-based microarrays 

have emerged, differing in probe length, number of probes required per gene, nature of 

the production processes, design customization, and cost [7].  Affymetrix (Santa Clara, 

CA) pioneered the commercial market by producing high density GeneChips using 

photolithography and solid-phase DNA synthesis, on which each gene is represented by a 

set (~20) of short oligonucleotides (20 –25mer) [8].  Alternative to using chromium 

masks in conventional photolithography, NimbleGen’s (Madison, WI) maskless arrays 

(24 – 70mers) are produced by light-directed synthesis of oligonucleotides controlled by 

a digital micromirror device [9].  Other commercial platforms include Agilent’s (Palo 

Alto, CA) microarrays produced by an inkjet printing technology that synthesizes 60mer 

probes [10], CodeLink BioarrayTM (Amersham Biosciences, Piscataway, NJ) that uses a 

3D polyacrylamide gel matrix as the slide surface for depositing 30mer oligonucleotide 

probes [11], and CombiMatrix’s (Mukilteo, WA) CustomArrayTM (50 - 70mers) which 

contains arrays of individually addressable microelectrodes for in situ oligonucleotide 

synthesis by means of an electrochemical reaction [12,13].  

Commercial arrays are expensive, relatively difficult to customize probe design, 

and often limited to the model organisms.  Spotted long oligonucleotide microarrays 

provide an inexpensive and highly customizable alternative.  These arrays are produced 

in a similar fashion as the spotted cDNA arrays by depositing solutions of pre-

synthesized oligonucleotide probes on a glass slide.  The long oligonucleotide probes, 

usually 40 to 70mer in length, can be synthesized commercially.  The array production 
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can normally be performed in an in-house academic facility used for producing cDNA 

arrays, making it an ideal platform for academic laboratories. 

Although spotted oligonucleotide arrays can be produced and used with a very 

similar method to those widely used for cDNA arrays, the success of oligonucleotide-

based arrays are highly dependent on their probe design.  To fulfill the objective of an 

oligonucleotide-based genome array, several design considerations need to be addressed.  

Most importantly, the probe sequence should be unique in the genome to minimize cross-

hybridization.  In addition, based on empirical rules used in primer designs, sequences 

that can form internal secondary structures should be avoided to maximize probe 

accessibility.  Low complexity sequences should also be avoided to prevent nonspecific 

hybridization [14-16].  Other criteria are more unique to the design of a genome array, 

such as uniformity in probe melting temperatures and the proximity of probes to the 3’ 

end of a gene.  Another critical consideration is the choice of probe length, a balance 

between specificity and synthesis feasibility.  In general, longer probes provide better 

specificity, but are associated with increasingly lower percentages of full-length probes 

(assuming 99% coupling efficiency, less than 50% of 70mer probes are full-length) and 

higher cost.  Very short probes (<25mer) such as those used by GeneChip arrays require 

multiple probes per gene to improve signal specificity. 

A computational approach is ideal to find the optimum design solution for this 

multi-parameter problem.  Existing primer design programs are inadequate for designing 

a whole genome array.  Therefore, we developed ArrayOligoSelector (AOS) specifically 

for the purpose of systematically selecting gene-specific long oligonucleotide probes for 

entire genomes. For each open reading frame (ORF), the program optimizes the 
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oligonucleotide selection on the basis of several parameters, including uniqueness in the 

genome, sequence complexity, lack of self-binding, and GC content.  Using AOS, we 

designed a long oligonucleotide microarray for the complete genome of Plasmodium 

falciparum, the most deadly causative agent of human malaria. This malaria chip has 

been used to study the transcriptome of the parasitic intraerythrocytic developmental 

cycle and sequence variation between different P. falciparum strains. 

Similar approaches to oligonucleotide design have previously been described, but 

the exact algorithms, source code, and/or accompanying hybridization data are not 

available [8,10,17].  

We made the algorithm, AOS source code and software, as well as the 

hybridization data publicly available to ensure public usage of the program, which is 

especially important for designing genome arrays for organisms like Plasmodium that 

hold minimal commercial interest, yet are immensely important for public health.  Since 

we made AOS available, scientists all over the world have used AOS to design genome 

arrays for a wide variety of organisms including mouse, malaria, yeast and bacteria. 

 

Algorithms 

 To design an optimum set of oligonucleotide probes for a given organism, AOS 

uses the ORF sequences and the complete genomic sequence as inputs, and then selects 

an optimum oligonucleotide for each ORF.  The workflow of AOS consists of four major 

steps: 1) data preprocessing to ensure the correct sequence format and user inputs; 2) 

cognate sequence identification to discriminate true genomic targets from regions of 

potential cross-hybridization; 3) computing the following parameters for every 
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oligonucleotide in an ORF sequence: uniqueness in the genome, internal secondary 

structures, GC percentage, and sequence complexity; 4) selecting a set of optimum 

oligonucleotide sequences using a rule-based filter procedure. 

  

Step I: Data preprocessing 

 Correct data format, user inputs and computational resource are critical to ensure 

a smooth AOS execution.  In the data preprocessing stage, AOS interacts with a user to 

obtain the sequence files (ORF sequences and the complete genome sequence), the 

oligonucleotide probe length, the choice for sequence masking, and the method to 

identify cognate sequences.  It then verifies that the sequences are in the correct FASTA 

format, sequence identifiers do not contain white space characters to interfere with result 

parsing, no duplicated sequences in the sequence files, user input parameters are in the 

correct numerical range and selections, and the appropriate operating system is used.  If 

all checks are passed, AOS is recompiled on the user’s computer and proceeds to the next 

step. 

 

Step II: Cognate genomic sequence identification 

 The cognate region is the genomic region where an ORF originates.  Accurate 

identification of cognate regions is essential for differentiating true targets for an 

oligonucleotide from cross-hybridization regions.  Since this information may not be 

easily available to all users, AOS opts to derive this information computationally based 

on the sequences provided in the two input files. 
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As the second step in the program workflow, AOS identifies an ORF’s cognate 

region by reconstructing its exon structure.  Each ORF was first aligned to the genomic 

sequences by a sequence homology search (BLAST or BLAT), alignments with 100% 

identical matches were stitched back together through a heuristic process to recapitulate 

the exon pattern.  The principle behind this strategy is that individual exons should be 

among those perfect alignments, and the goal is to identify those specific perfect 

alignments and the exact order they should be arranged in to form the corresponding 

ORF.  However, the difficulty comes from the fact that not every 100% identical 

alignment region is necessarily a part of the ORF exon structure.  Although an exhaustive 

search of all possible arrangements of any number of perfect alignment regions can find 

the correct exon structure, the number of arrangement combinations increases factorially 

as the number of perfect alignments increases(∑
n

n!), which makes an exhaustive strategy 

impossible to complete if a great number of perfect alignments was initially identified.  

Therefore a heuristic approach is used to decrease the search space.  The first 

heuristic trick is that a search can only start from either a perfect alignment of >50 bp, or 

a “must-use” alignment (see below for details).  Secondly, a search can only continue by 

adding other perfect alignment regions that satisfy the following spatial  constraints: same 

chromosome and strand orientation; proximity to all existing alignment regions (<3000 

kb); minimum overlap with existing alignment segments (<70% of the smaller of the new 

and existing regions); consistent arrangement in both ORF and genome sequences (e.g. if 

the new region was to the 5’ end of an existing region in the ORF sequene, it must be so 

in the genomic sequence as well).  Third, a seach stops when the sum of the existing 

regions reaches the length of the ORF.  Fourth, a search also stops when the sum of all 
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potential regions is highly unlikely to reach the length of the ORF.  Fifth, only 100% 

perfect alignment regions can be considered (SNPs not allowed).  Sixth, if the first high 

scoring hit alignment (best alignment) to any chromosome is less than 50bp, alignment 

regions from the entire chromosome will not be considered. 

In simple terms, the AOS search procedure is to construct combinations of 

alignment regions; each combination a solution for the correct exon pattern.  Procedurely, 

the above heuristics is implemented as first identifying all perfect alignments, followed 

by building a connectivity matrix to specify compatible alignments if an alignment has 

already been selected as part of an exon pattern (based on the spatial constraints 

described above: compatible chromosome, strand direction, proximity, overlap, and 

spatial orientation).  Subsequently, AOS identifies the “must-use” alignments by 

scanning for regions in the ORF sequence that are covered by a single perfect alignment, 

and the corresponding alignment is referred to as the “must-use” alignment.  After that, 

the AOS search starts to construct a list with a single alignment that is either a “must-use” 

alignment or a perfect alignment >50 bp.  AOS proceeds to add additional perfect 

alignments (n) that are allowed by the connectivity matrix. The original list is duplicated 

n times and a different alignment is added at the end of each list.  This duplication and 

extension procedure continues until when existing alignments in a list have reached the 

full length of the ORF.  If existing alignments in a list plus all their potential additions 

(allowed by the connectivity matrix) cannot reach the full length of the ORF, the list is 

eliminated from furthur consideration.  At the end of the search process AOS finds a 

collection of lists; each contains one or more alignments.  Each list is a possible solution 

for the real exon pattern. 
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To ensure the accuracy of the results, lists in the final collection are  re-examined.  

Only combinations within ±20 bp of the ORF full length size and able to generate the 

original ORF sequence in a correct order are kept as solutions for the exon pattern 

reconstruction.  Multiple solutions are allowed.  The corresponding exon locations in the 

genomic sequences are extracted as an ORF’s cognate region. This  cognate region 

information is stored in disk to be used in the uniqueness calculation in Step III. 

 Users can choose to use either the BLAST or BLAT program for sequence 

alignment to identify the perfect alignment regions [18].  BLAST is more sensitive and 

typically generates a greater number of alignments, therefore resulting in a bigger search 

space and slower speed for exon pattern reconstruction.  Using BLAT is faster, but it has 

the risk of missing short alignments.  It is important to note that the low complexity filter 

must be turned off during alignment at this step, otherwise cognate regions will fail to be 

identified.  However, this is at a great cost of computational speed due to the large 

number of short low complexity alignments generated. 

 

Step III: Parameter computation  

In the parameter computation step, AOS calculates values for the following 

features for every oligonucleotide sequence: uniqueness in the genome, internal 

secondary structure, sequence complexity, GC percentage, and position in the ORF.  

Each feature is computed using an independent module, which can also be used as a 

stand-alone program to obtain individual parameter.  The parameter values were written 

to disk for use in the later selection step.  

1. Uniqueness in genome 
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The uniqueness of an oligo in the genome was measured as the theoretical binding 

energy of the worst potential cross-hybridization to its homologous regions in the 

genome.  Potential cross-hybridizations are detected by BLASTN alignment, followed by 

binding energy calculation using the energy module. The uniqueness score of an 

oligonucleotide is the most stable binding energy between the oligo and the genome 

excluding the corresponding ORF’s cognate region. 

 In earlier versions of AOS, we used the number of sequence identity in BLAST 

alignment between the oligo sequence and the genomic cross-hybridization targets as our 

measurement of cross-hybridization.  But our experimental results demonstrated that this 

metric was a poor predictor for cross-hybridization of different hybridization binding 

structures.   A DNA-DNA duplex becomes less stable when bulges (sequence 

mismatches) are introduced into the middle of the duplex.  Given the same number of 

perfect base pairing (sequence identity), hybridization signal strength is stronger when 

the matches form a continuous stretch compared to a different duplex structure with 

mismatches distributed in the middle (Figure 3-4). 

 To overcome the difficulty to predict cross-hybridization by simple sequence 

identities, we implemented the energy module to calculate hybridization binding energy, 

in order to unify predictions of different binding structures into a single formulation.   

The binding energy calculation is based on the nearest neighbor model for calculating 

nucleic acid helix formation and melting temperatures [19], RNA secondary structure 

prediction algorithms [20,21], and experimentally estimated thermodynamic free energy 

parameters for oligonucleotide duplexes and RNA secondary structures [22-28].   
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In addition to careful modeling of the duplex energetic property, the accuracy of 

the binding energy calculation is highly dependent on initial accurate identification of 

those DNA duplexes.  AOS uses BLASTN alignment program to identify those regions 

between the ORF and the genome, and then uses the energy module to calculate the 

binding energy between the aligned regions. 

1.1 Binding energy score  

The binding energy score is the summation of the following three terms: the base 

pair stacking energy between the two adjacent base pairs (such as dAA/dTT), the initial 

binding energy required for helix initiation, the interior and bulge loop destabilizing 

energy. 

 The base pair stacking energy is derived based on the nearest neighbor rules, i.e., 

the energy of the duplex is the addition of free energy terms of each adjacent Watson-

Crick base pair, which includes energy contribution for both base pair stacking and 

hydrogen bonding.  For example, in the following five base pair duplexes, the first two 

base pairs (dAT/dAT) have a stacking energy of –0.9 kcal/mol, the second and third base 

pairs (dTT/dAA), –1.2 kcal/mol; the third and fourth base pair (dTG/dCA), –1.5 kcal/mol 

and so on. The final stacking energy term is (–0.9) + (–1.5)  + (–1.2) + (-2.3) =  -5.9 

kcal/mol. 

A T T G C 
|   |   |   |   | 
T A A C G 

 
Individual stacking energy parameters were obtained by experimentally estimating 

nearest neighbor parameters for all ten adjacent base pair combinations [22]. 
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The helix initiation energy term models the free-energy change for initiation of 

DNA duplex, which was estimated experimentally to be +3.4 kcal/mol [22,28]. 

The interior loop or bulge loop can form when mismatches are closed by at least 2 

base pairs.  Mismatches on both strands result in the formation of an interior loop. If a 

mismatch only exists on one strand, the formation is an interior bulge.  Both interior loop 

and bulge contributed destabilizing free energy to the duplex.  The loop or bulge 

destabilizing energy is modeled as the sum of the following three terms:  an entropic term 

that depends on the size of the loop or bulge; terminal stacking energy for the mismatch 

base pairs adjacent to both closing base pairs, which sometimes provides a favorable free 

energy; an asymmetric loop penalty for non-symmetric interior loops [20].  The terminal 

mismatch stacking energy parameters such as dAA/dTA (+0.61 kcal/mol) were estimated 

experimentally using short nucleic acid duplexes [23-27].  The parameters for the 

entropic term were derived from parameters used in RNA secondary structure prediction, 

which were empirical approximations of experimental measurements (Table 2-1) [21]. 

The parameter for asymmetric loop penalty was based on a study of internal loops 

in oligonucleotides by Peritz et al. [29,30].  An asymmetric internal loop with a size of 

N1 and N2 nucleotides should be penalized by N* f(M) kcal/mol, where N= | N1 – N2 |, M 

is the minimum of 5, N1 or N2, and f(1) = 0.7, f(2) = 0.6, f(3) = 0.4, f(4) = 0.2 and f(5) = 

0.1. 

The nearest neighbor model had good agreement with experimental data on short 

duplexes. It is well known that the binding free energy and melting temperature of 

double-stranded DNA molecules plateau at a longer length.  However, evidence for size 

limitation of the nearest neighbor model and parameters is sparse.  In addition, the above 
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thermodynamic parameters used in our binding energy calculation were estimated from 

experimental measurements on short oligonucleotide duplexes (<20 bp).  Therefore, 

although we used both to model long oligonucleotide duplex binding stability, the 

binding energy values should be viewed as a function of binding stability on a relative 

scale, rather than be interpreted as the absolute free energy generated during DNA duplex 

formation. 

1.2 Energy score correlates linearly with measured hybridization strength on 

70mer oligonucleotides 

Although the energy module and parameters are probably not an accurate 

depiction of the true binding energetic property of long oligonucleotide DNA duplexes, 

we were interested in using the energy score as a relative measurement of hybridization 

strength, which could then be used to estimate potential cross-hybridization.  To evaluate 

the utility of the binding energy score to measure cross-hybridization, we conducted 

experiments on a series of 70mer oligonucleotides with various predicted duplex 

structures. 

We designed several series of 70mer microarray probes that target the 

Plasmodium falciparum genome.  In each series, there was a perfect 70mer that matched 

the coding sequence of an ORF perfectly; the rest of the series was composed of 70mers 

with various numbers of mismatched base pairs distributed either at the terminals or in 

the middle of the 70mer.  We hybridized transcripts extracted from various stages of P. 

falciparum parasites and then obtained the relative hybridization signal of the 

mismatched 70mers to the perfect 70mer in each series.  The binding energy score of 

each mismatched 70mer was computed for the duplex (alignment between the 
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mismatched and perfect 70mers).  Results demonstrated that there existed a linear 

relationship (Pearson correlation coefficient r = -0.91) between binding energy scores and 

the relative hybridization strength (Figure 3-3).  

1.3 Speed Optimization 

Binding energy scores are calculated as the sum of many independent terms, such 

as the base pair stacking energy and loop destabilizing penalties.  Therefore, for two 

adjacent oligonucleotide probes (with a single base pair offset), their energy score 

calculation involves a large degree of redundancy.  In addition, potential cross-

hybridization regions were initially identified by BLAST, followed by the binding score 

calculation, if we simply used a single oligonucleotide sequence as the input to the 

energy module, essentially the same BLAST operation would be carried out for adjacent 

oligonucleotides as well.  Both kinds of redundancy would dramatically decrease the 

speed of the energy module. 

To increase the speed, we optimized the energy module by the following 

strategies.  First, we only performed a single BLAST alignment using the entire ORF 

sequence.  Second, we computed the free binding energy score for an entire alignment 

instead of for a single oligonucleotide, excluding any alignment from the cognate 

sequence region.  Third, in addition to a single energy score, we recorded the score 

contributions from every adjacent base-pair in the entire alignment.  To derive the 

binding energy score for an oligonucleotide, we simply summed up the score 

contributions from the corresponding regions in the alignment.  Since an oligonucleotide 

sequence could be covered by more than one alignment, the final binding energy score 

was the most stable energy score (the largest absolute value). 
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2. Internal secondary structure 

The secondary structure module measures the potential of forming an internal 

hairpin structure within an oligonucleotide.  A fast approximation for detecting internal 

hairpins is by aligning the oligo sequence with its reverse compliment.   We implemented 

the Smith-Waterman algorithm to search for the optimal local alignment [31] and used 

the alignment score to represent the potential to form internal hairpins.  PAM47 DNA 

matrix is used (match +5, mismatch –4, gap opening –7, gap extension 0) in the 

implementation for local alignment. 

Sophisticated RNA secondary structure prediction methods such as Mfold were 

available [32] and likely to generate more accurate results, but they are much slower 

computationally. 

3. Sequence complexity 

The sequence complexity module measured the level of oligo sequence 

complexity using the LZW compression algorithm [33].  The advantages of this method 

are fast computational speed and no need for prior information for low complexity 

sequence elements.   It is implemented as the size of the oligonucleotide sequence minus 

its compressed version in bytes. 

4. GC content 

GC content is a key factor determining DNA duplex melting temperature.  We 

used it as the proxy for melting temperature, calculated as the the number of G C base-

pairs over the length of the oligo. 

 

Step IV: Optimum selection  
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 The last step of the AOS algorithm is to select a set of optimum oligonucleotide 

sequences based on the parameters computed in Step III.  An ideal oligo probe has a 

small negative value of binding energy score (unique in the genome), a small secondary 

structure score (lack of internal hairpins), a small sequence complexity score, a %GC 

close to the user-defined target %GC, and close to the 3’end of the ORF sequence. 

We implemented a rule-based filtering procedure to select for the optimum 

oligonucleotide.  The first filter is the uniqueness filter.  Oligos belonging to a single 

ORF are ranked first by their uniqueness scores (binding energy score).  Oligos scoring 

better than both an optional user-defined threshold and the default cutoff are kept in the 

candidate pool.  The default cutoff is defined as the larger (smaller absolute value, note 

energy scores were negative values) of the following two terms: the 5th percentile in the 

rank, and the best uniqueness score minus 5 kcal/mol. 

The second filter is to eliminate any oligos with user-defined (optional) unwanted 

sequences, such as a long stretch of AT sequence. 

The third filter operates on the sequence complexity parameter and secondary 

structure score in parallel.  Similar to the operation on energy scores, oligos that pass the 

cutoffs can proceed further.  Although it only operates on the current candidate pool 

(oligos that passed the previous two filters), the cutoffs are determined using the 

complete set of oligos belonging to a single ORF.  The initially cutoffs are determined at 

the top 33rd percentile of the rank by either the secondary structure score or the sequence 

complexity score.  If there is no candidate oligo that can pass both thresholds 

simultaneously, each cutoff is relaxed incrementally (secondary structure score cutoff 
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increases by 10; sequence complexity score cutoff increases by 1) until one or more 

oligos pass both thresholds simultaneously. 

The fourth filter operates on the %GC parameter.  Initially, only oligos with the 

user-defined target %GC can pass. If no oligo in the current candidate pool satisfies this 

criterion, the %GC boundaries are relaxed by 1 percentage point at a time in each 

direction until one or more oligos score within the range. 

The final filter operates on the 3’ proximity to select the oligo that is closest to the 

3’ end of the parent ORF.  This oligonucleotide is our optimum selection.  At this point, 

AOS reaches its final step to generate program output of the optimum oligo selection. 

Occasionally, if a user wants to design more than one oligo per ORF, AOS will 

attempt to select non-overlapping (must be >10 bp apart at the oligo starting positions, 

but typically >50bp) oligos from the current pool.  If this is not successful using the 

current candidates, the selection procedure iterates from the combined secondary 

structure and sequence complexity filter to the 3’ proximity filter, until the desired 

number of oligos is selected, or when the cutoffs are fully relaxed and the candidate pool 

reaches its maximum size.
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